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What is a Left-Handed Metamaterial?
lLl (Permeability)

air
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(Permittivity)
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selago speculates about the possibility of LHMs and discusses their properties.
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What is a Left-Handed Metamaterial?

Veselago’s Conclusions

« Simultaneous negative permittivity (-€) and permeability (-u).

* Reversal of Snell's Law (negative index of refraction), Doppler
Effect, and Cerenkov Effect.

* Electric field, Magnetic field, and Wavevector of electromagnetic
wave in a LHM form a left-handed triad.

« LHMs support backward waves: anti-parallel group and phase
velocity.

* Artificial effectively homogenous structure: metamaterial.
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Rectangular Waveguide Filled with LHM
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HFESS simulation using effective medium [1]

naturally occurring LH material has not yet been discovered
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LHM — Resonant Approach

* 1967: LHM were first proposed by Russian Physicist Victor Veselago
» 2001: LHM realized based on split ring resonators - Resonant Approach towards LHMs [2].

SRR

metal wire

SRR-based LHM unit-cell

SRR: at resonance provides u<0

metal wire: provides €<0

* SRR-based metamaterials only exhibit LH properties at resonance - inherently narrow-band
and lossy.
* SRR-based LHMs are bulky - not practical for microwave engineering applications.

A
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LHM — Transmission Line Approach

» Backward wave transmission line can form a non-resonant LHM [3]-[4].

» Transmission Line Approach is based on the dual of a conventional transmission line.

Series capacitance (C,) and shunt
inductance (L,) combination
supports a fundamental backward

wave.

—1

Perfect LH transmission line (D / C L LL

* Perfect LH transmission line not resonant dependent - low-loss and broad-band performance.

» However, perfect LH transmission line is not possible due to unavoidable parasitic right-
handed (RH) effects occurring with physical realization.
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Transmission Line Approach
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Composite Right/Left-Handed Metamaterial
©==pC (@ a);+,BCO

AN
4 A

B=s(w). |o’C.L, + 21 — I'R+CR ,
»CL |\L ¢

: : * Low frequencies: supports
S(e) = {‘ lif o< mln(a)se’a)sh)} backward wave

+1f > s g 1 i
ift > max(a,, oy,) » High frequencies: supports forward

where wave
1 1
O, = and @y, = * Two cases
C Ly Cely < Unbalanced: w_# wy,

< Balanced: w,,= W,

=
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CRLH Metamaterial

1 2 3 N
o_)|_m__?%|_m — L ey—TL
£3 1 L3 £ 3 L3
1 . \
Homogeneity Condition
* Long wavelength regime
CRLH TL
O— E—O *p<A/4
PN y
O—II——-O
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1
|
0 L=N*
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CRLH Metamaterial — Physical Realization

Composite right/left-handed (CRLH) unit-cell

Distributed microstrip implementation
based on interdigital capacitor

A

ANSOFT @

capacitors

N

0 OO

metal pads
(provides RH effects)
inductor/ ®

via to gnd

Lumped element implementation

Distributed microstrip implementation based
on Sievenpiper mushroom structure [5]
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CRLH - Implementation and Analysis

Cascade periodic unit-cell to form one- or two-dimensional CRLH metamaterial TL.

How to Characterize a CRLH Unit-Cell

Propagation Constant — Dispersion Diagram

\_ Impedance — Bloch Diagram )

=
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Comparison of LHMs to PBGs and Filters

Photonic Bandgap (PBG)

al=ale o

beriog
Similarities
* periodic structures
» can be more than one-dimensional

Differences

* PBGs have to be periodic; lattice period
determines scattering

» PBG operated at frequencies where lattice
period is multiple of A /2; LHMs operated at
frequencies where period < A /4.

A

Filters

/ —
'dislectric
/ substrate

Similarities

* periodic structures
* based on low-pass/high-pass structures

Differences

* Filters generally designed to meet magnitude
specifications; LHMs designed to meet both
magnitude and phase.

* Node-to-node phase shifts of 180° required
for filters.

* LHMs can be one-, two-, or three-
dimensional and are used as bulk “mediums.”
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Dominant-Mode Leaky Wave Antenna

EJPY
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Leaky-Wave Antenna Theory

h
'&II:I-
Conventional RH Leaky-Wave Antenna b 4
(operated at higher-order mode)

Principle

| _/
D
-

source =P X

HEE RS N . 0=asin(A(w)k,)

CRLH Leaky-Wave Antenna [6] A

(operated at dominant mode) : kz2= koz' ﬂz
@ =—[C @ =+/C . o
\ﬂ 0 @ - /Characterlstlcs: \
D | B 1 L. :
LH | RH » Operating in leaky regions
RAD./

RAD.
\

— CRLH
Co _— " Il : FORWARD ( #>0)
LH RH
GUIDANCE GUIDANCE - BROADSIDE radiation ( f=0)
@

Il : BACKWARD ( #<0)

balanced case: v, (=0)+0

\ Fundamental mode

/
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1-D Dominant Mode Leaky-Wave Antenna

3-D Far-field Pattern for Several Frequencies

Design Specifications

f = 2.4 GHz
Zs=50 Q

~ unit-cell

frequency beam scanning
Backfire — to — Endfire
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Design Flow

[ Unit-cell parameter — Design Guidelines]

I

[Dispersion/BIoch Diagrams — Driven Mode]

[ Optimize unit-cell for specifications ]

I

[Cascade unit-cells to form CRLH transmission line ]

J

Simulate CRLH transmission line
« S-Parameters: matching
* Far-field: fast-wave region for leaky-wave applicationj
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1-D CRLH Unit-Cell (Interdlgltal)

* Distributed unit-cell |( )l
¢ series capacitance provided by A A
interdigital capacitor
+» shunt inductance provided
from shorted stub w
+ shunt capacitance from top
metal to ground plane
+ series inductance from current
on interdigital capacitor Y I( ls
lc
Variables Initial Design Final Design
unit-cell period p 12.3 mm 11.4 mm
stub length I 10.0 mm 10.9 mm .
stub width w, 1.00 mm 1.00 mm via
interdigital finger length I, 10.5 mm 10.2 mm
interdigital finger width W, 0.30 mm 0.30 mm —-
spacing between fingers S 0.20 mm 0.20 mm |(_)|
via radius r 0.12 mm 0.12 mm We
substrate height h 1.57 mm 1.57 mm
substrate permittivity & 2.2 2.2
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1-D CRLH Unit-Cell Design Guidelines*

For 2-D space scanning, we need to design a balanced (w,, = wg,) CRLH unit-
cell so that there is a seamless transition from LH to RH operation.

KChoose center frequency, f , which 5. Set the number of fingers, N, to 8 or 10.
represents broadside radiation. (f,=2.4 Then determine required w, and S=2w /3.
GHz) N=10 chosen.
: . . w

2. Calculate width required to obtain Z,, set w W, * ———<~ 0.3 mm

to this value. (w~5.0 mm) (SN _Zj
3 3

3. Set stub width, w, to 20% of w. (w,=1.0
mm) S=0.2mm

4. Set stub length (I5'=I- w) to w; the electrical 6. Calculate length of interdigital finger.

length of the stub has to be less than T1/2. P

C
|, ~—~—2—~10.5mm
\ 8 8f .& /

* Guidelines have been test on Rogers Duroid 5870 (er=2.33) and 5880 (er=2.2) for various substrate
heights; for high permittivity substrate, the number of fingers should be reduced.
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Dispersion/Bloch Diagram Extraction

Paort1 Port2

T
5

25

&

[ 25

4 £

E "

>

o

/ ahe

extra section of mircostrip (5 mm each)

Planar EM simulation

\) S-Parameter extraction

A

Design Specifications

f =2.4 GHz
Zs=50 Q

\
Bp = cos” 1—-5,155 + 51,5,
2S,,

7 _ 2]Z,3,,sin(fp)
° (1_811)(1_822)_321812
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Dispersion Diagram Extraction

Setup dispersion equation; this can be obtained directly from the S-parameters.

&\ Qutput Variables El[@f@
1 1 - Sl 1 S 22 + Slz S 21 DutuVrlabIes

= COS e
Z i

=
Go to Results > Create Report Nare feteo I W

I R aco([1-511*521+512521)/2/521) h
A
Create REpDI't g| Calculation
Inzert Quantity Inta Expressipn |
Target Desigr: | J Categony: Quantity: Functior:
Design: Yariables
Output ¥ ariables S(Portl Port2] acos
Beport Type: |Standard = Repart YSwR[Portl] acosh
_Type: Standard il " Parameter S[Port2 Portl] ang_deg
Z Parameter S(Port2 Port2] ang_rad
Dizplay Tupe: - . - Gamma WEWR(Port2) asin
Lizplay 1yp |F|ectangular Plat ﬂ Solutior: | Setup 1 Sweep 1 Pot 20 ek
atan
atanz
Cancel | atanh
conjg W
Function

Inzert Function
Then click on Output Variables = -

I Mame: |Beta_|:| Add | | |Jpdate | Delete | I

acoz([1-511°521+512#521)/2/521)

I Expreszion:
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Dispersion Diagram

Final Design Dispersion Diagram in Ansoft Designer

6.00 7
/ T
fast-waye region //
o beta <k Z_/ T >self resonance
] / of interdigital capacitor
4.00 ]
___-———-*"//

Y 1 [GHz]

| T !
3.00 -
j (& slow-wave region
N
‘ &3 beta > k,
' >
2.00

\\\‘__‘——.

0.00  25.00 5000 7500  100.00 12500  150.00  175.00
abs(re(Beta_p}} [deg]

1.00
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Bloch Impedance Diagram

Resulting Bloch Impedance Diagram in Ansoft Designer

100.00 |
5 |
75.00 —— Re(Zg) i
: — Im(Zg) I J
= 50.00_] Al
ol / /
Q 1) u
c
©
g |
g 000 |
£ |
-25.00_ I
LH | RH
fast-w:lnve regilon fast-wave region
-50'02.00 15 200 250 300 35  4.00

F [GHZ]
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10-Cell CRLH Leaky-Wave Antenna

Return/Insertion Loss

0.00

Saan - \

SJV’V\/ AYAVERNZR\Fid
R /\ i [ \\ 7N
- [RS8 SRR
30.00_] \l |
| y
i Return loss |
40.00
LH | | RH f
] fast-wave redion fast-wave region
50.001_0] S T e0 22 PR Coz80 340
F [GHz]
ANSOFT
@ ASS SYSTEM SUCCESS
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10-Cell CRLH Leaky-Wave Antenna

Far-field Pattern for Several Frequencies




Small Metamaterial Antennas

EJPY
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Resonant Antenna Theory

Conventional RH Patch Antenna

(treat as periodic, consisting of 2 RH “unit-cells”)

A
RH _*p
RH p
\
n=+1,+2, ...
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CRLH Patch Antenna
(2 CRLH unit-cells)

-

resonance condition

P,

_nz
2p

CRLH _ip
CRLH p
\
)
n=0,+1, %2, ...

CRLH can have same half-
wavelength field distribution, but
at much lower frequency

> Bp
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1.0 GHz CRLH n=-1 Antenna [/]

for 4 unit-cells

5 .
— : Initial dispersion curve
~ 4} ; — Increase L
& I — Increase C_
= 3 \— Increase C, & L,
(&)
c
S 2y
U |
Qo [ |
Lt 1t I
I I
0 . . . . XI . . . . | . . . . | . . . .
0 0.25 0.5 0.75 1 )
Brp/n n= -1 mode is used
A h, =3.16 mm
MIM h, = 0.254 mm
Capacitance

CPW stub

ground CWP feed 1/19A, x 1/23A,, x 1/88A,
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o

1
(3]

10 |

15 |

Return Loss (dB)

20 |

1.0 GHz CRLH n=-1 Antenna [7]

-25
0

— E-copol (x-z plane)
— E-xpol (x-z plane)

0511522533.5
Frequency (GHz)

135

— H-copol (y-z plane)
— H-xpol (y-z plane)

90 90
-5 R

-10
-15
-20
-25
-30
5
180 0-35 -30 -25 -2Q 15 -10 -5

@rrore

N

315 225

315

270 270
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CRLH n=0 Antenna (Monopolar) [8]

<
| )
Port1 /7 e
.< 9 .
R
)7
¢
)

Experimental Results

6 4.0
3.8
5 4
o L 3.6
£
@
o 3.4
~ 2
o
a —e— Exp. Peak Gain -3-2
—A— Exp. Resonant Frequency |
0 , . , . , 3.0
2 4 6
# of unit-cells (N)
4 . )
As N increases...
* Gain increases.
* Resonant frequency does not
change much.
\han9 Y,
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CRLH n=0 Antenna (Monopolar)

x-z plane
- - - y-z plane
—-—--X-y plane

0-

- - - exp.

Cross-Pol
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Dual-/Multi-Band Metamaterial
Components

EJPY

ASS SYSTEM SUCLCESS
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Dual-Band Hybrid Coupler

CRLH / CRLH hybrid [9] 4
360
. CRLH . Conventional quadrature:
270 restricted to odd harmonics
CRLH CRLH because only control on slope
180
4 _ CRLH :. DC offset
90
Characteristics: f\/f, © o =31,
0 — i gl
» dual-band functionality for an :
arbitrary pair of frequencies f,, f, —OQ|F--------- :
* principle: transition frequency (f,) 120
provides DC offset additional degree
of freedom with respect to the 7 ISR, N conv. RH
phase slope CRLH
« applications in multi-band systems -360
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Dual-Band Hybrid Coupler

Branch Line
Experimental Results

1
(&)

rs (dB)

N
o

qmete
o

et

isolate : out

S-par
S

_25:--..I....I....I....I....I.... R
Band # 1: 0.92 GHz 06 08 1 12 14 16 18 2

frequency (GHz)

Band # 2: 1.74 GHz
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Negative Refractive Index Lenses

EJPY
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Negative Refractive Index Flat Lens [10]

(ny)singy = (ngy) sinbgy

0LH

RH

RH medium LH medium

refractive index ng, >0 refractive index n ,,<0

Possibility of realizing a flat lens

AN

N4

Effective medium HFSS simulation

RHM

source
m from interface)

LHM

E-field magnitude

SUCLCESS

e
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Two-Dimensional CRLH Realization

Based on Sievenpiper High-Impedance Structure

L T

L period of unit cell

ground plane

How to obtain dispersion characteristics?
1. Drivenmode Approach — Simple, quick, 1-D dispersion diagram.

2. Eigenmode Approach — Requires more processing time, accounts for
mode coupling, 2-D dispersion diagram.
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Unit-Cell Setup: Physical Details

metal patch

metal via
radius = 0.12 mm
height = 1.27 mm

substrate parameters &ground plane X y
£=10.2, tand=0.0023 Np/m

* patch,via, and ground plane are assigned as copper.

EJPY

ASS SYSTEM SUCLCESS
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Design Flow

[ Unit-Cell Parameters — 1st Order Calculation ]

J

Desigf [ Dispersion Characteristics ]

Driven Mode Approach Verify Eigen Mode Approach
 1-D dispersion > « 2-D dispersion
* No mode coupling * Mode coupling

[ Flat Lens Realization — Phase Matching ]<}J

J

4 I
HFSS Simulation Flat Lens

« Symmetry Conditions: Reduce Simulation Time
* Field Plots: Magnitude & Phase

(@ FRSF-PASS SYSTEM SUCCESS
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Sievenpiper Unit-Cell: 18t Order Calculation

distributed unit-cell equivalent circuit model

f,, = 1/{2mwsqrt(Cg x L)}
series capacitance: C, ~ substrate permittivity x (patch area/substrate height)

shunt inductance: L, ~ 0.2 x substrate height x In[(2 x substrate height/via radis) — 1]

* Left-handed mode will always occur below the shunt resonance (wg,). Therefore,
design dimensions such that wg, occurs at higher limit of frequency of interest.

f, ~ 9 GHz for the dimensions shown in previous slide.
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Sievenpiper Unit-Cell: Driven Mode

>| |« gap=0.2 mm * Modify unit-cell so that ports
— ~ can be placed on it, while

via\ keeping dimensions the same.

Unit-cell becomes asymmetrical.

Port 1
A
o
v

Port 2

 Run driven mode solution; set
mesh frequency to w, from 1st
order calculation.

p=5.0 mm » Obtain S-parameters, use
following expression to calculate
propagation constant.
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Sievenpiper Unit-Cell: Driven Mode

1-D dispersion diagram (from Port 1 to Port 2)
9.00
- &/ —

_ '\\/
i N
\
7.40 (103

. /‘/_#"f T right-handed mode
r' \
5.804 \

t-handed mode

. /_________- y—o
\——___

Y1 [GHz]
[7—-=-..'__'__
-
Q
S
L. S
\‘-8\
©
@

0.00 ' ' 50,00 ' ' ' C 10000 ' ' C 15000 ' 20000
abs{re(Beta_p)) [deqg]
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Eigenmode Solver: 2-D Dispersion Diagram

X y
I' to X: px=0°, py=0°—180°
X to M: px=0°—>180°, py=180°
M to I' : px, py: 0°—>180°

* px: phase offset in x-direction
* py: phase offset in y-direction

Use Linked Boundary Conditions (LBCs) in HFSS to apply required phase shifts.
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Sievenpiper Unit-Cell Setup

Airbox and PML Setup

1. Create airbox1.

2. Select top face of airbox1 and
assign PML.

3. Create airbox2. B - A
<< —
— Y
r A
airbox2 <
. < hairbox1=8'00 mm
airbox1
4
N \ v
physical dimensions
shown in previous slide J X Yy

A

ANSOFT @_

SYSTEM SUCLCESS
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ANSOFT

7))

9 >
- ye]
(4v] 0 =)
2 £ 8
= s
O N S
m o
y o) s
g =
C

el

| I | x

Slave BC: sx
* phase delay: px (180 deg)

;
2
:
:
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XZ - Planes
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Eigenmode 2-D Dispersion Diagram

Plotted in Microsoft Excel

5 .
I \

1
__ 4
N |
I -

‘

93 |
> / |
O -
Al *
:szf
o
o)
| G
=1

o-j |

ﬁ
X
<
=

A
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Dispersion Comparison: 1-D vs 2-D Solve

8 L o~
/
! /
/ —— Drivenmode

6 7
I / —— Eigenmode (2D)
5 | /

frequency (GHz)
©
\7

/ \
/
2 /
1 |
0 |
0 90 180

Beta™p (deg)

Use drivenmode to quickly characterize/design, eigenmode to verify
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Flat Lens — Physical Realization

Entire circuit on Roger RT 6010 substrate with £,= 10.2 and h = 1.27mm

A
PPWG
40.0 mm (n=+3.2) _voltage source
I15 mm refocus should
vy NN -
'T T I T I T occur at 3.8 GHz
.I\.L.‘"J,\I... . LT
ResEesc ke
50.0 mm LHM based on
x4
mushroom unit-cells
= 3. 3.8 GHz)
v { z)
A
40.0 mm PPWG
(n=+3.2)
\4
< >
125.0 mm
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Flat Lens — Phase Matching Condition

5 1 7
// ya

= a4 / phase match at 3.8 GHz
T /" |Bp| = 72 deg, |n|=3.2
SD-/ 3 R X .
-
8o
o
)
g

1,

()4

rO 30 60 90 120 150 180 210 240 270

Bp (deg)

=
(@ FRSF-PASS SYSTEM SUCCESS
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Entire circuit on Roger RT
6010 substrate with

£=10.2and h

Flat Lens — Simulation Setup

= 1.27mm 130.0 mm

LHM based on
21x10 mushroom unit-cell
(n=-3.2@ 3.8 GH2)

* Finite conductivity (Copper) applied on bottom of airbox, PPWG trace, and mushroom patches.

Boundary Conditions
» Radiation boundary applied on Top and Side A, B, and C of air box.

» Symmetry boundary (perfect-H) applied to Side D to reduce problem size.

e
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Flat Lens — Field Calculator for Phase

To plot the E-field phase, the field calculator has to be used.
» Go to HFSS > Fields > Calculator
* Since the field is quasi-TEM, only the z-component of the E-field is required.
% Quantity > E
s Scal? > ScalarZ
% Vec? > VecZ
s Complex > CmplxPhase
* Mag
+ Add, give name PhazeZ

Fields Calculator.

Wamed Expressions Context: flat_lens_mushroom
Mame | - Solution: |Setup1 : Lastidaptive ﬂ
Mag E M ag[atPhaze(Sr Field Type: | J
Mag H M ag[atPhaze(Sr
Mag_Jwvol M ag[atPhaze(Sr Clear &l Freq | J
hag_Jeurf MagiatPhase(<) Phase ||jdeg ﬂ
v
< >
Add .. |
Librany: | s Ern | Save To.. Change Yariable Values...
< Sl Mag(PhaselecZ(ScalaiZ[<Ex Ev.Ez]11

@API*aIEA]lﬂN h‘J'If-HHEHI’E-Iﬁ%I%-E %I I:M SLIEEEE i\\

-PERFORMANCE ELECTRONIC DESIGN




Flat Lens — E-Field Plots (Ground Plane)

field on ground plane @ f=3.75 GHz

Magnitude Phase

e
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Flat Lens — E-Field Plots (Above Structure)

field on top of structure @ f=3.75 GHz
(3.5 mm above top metal)

Magnitude Phase
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Flat Lens — Experimental Results

f,=3.79 GHz

E-field measured ~ 3.5 mm above

CRLH region
ANJSADF' @
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Future Trends
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Applications & Research

Metamaterial Multiple-Input-Multiple-Output (MIMO)
Arrays for 802.11n Application [11]

e
RAYSPAN™

— 222 PCI Express design

A3 Metarray.n, Ultra compact

aspect ratio, ~——__

Single element with feeding line

Active CRLH Metamaterials

» High-gain leaky-wave antennas (embed amplifiers in unit-cell) [12]
* Distributed amplifiers [13]

Tunable Phase Shifters [14]

i

BaSrTiO,
Sio

2

Silicon

=
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http://www.rayspan.com/index.html

Implementations

Nano-Metamaterials: optical frequency applications [15]

Incident wave

Evanescent-Mode Metamaterials [16]

1-D LHM: cylindrical DRs in TE mode cutoff
parallel plate waveguide (-€)

—_—

Farallel-plate waveguide
Disc-type DR

H-field Profile (TEy,; mode, -y)

& Fiple[aim]

T 1827e

1. Bt i
. 1 SITEE-mn

1. il -l

Three-Dimensional Metamaterials [17]
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Summary

* Left-Handed Metamaterial Introduction
*» Resonant approach
s Transmission line approach
« Composite Right/Left-Handed Metamaterial
 Metamaterial-Based Microwave Devices
s Dominant leaky-wave antenna

L)

4

)

L)

» Small, resonant backward wave antennas

<

)

» Dual-band hybrid coupler

L)

4

“* Negative refractive index flat lens
* Future Trends
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Design Guide

* Ansoft Designer: 1-D Leaky-Wave Antenna

» Ansoft HFSS: Negative Refractive Index Flat Lens
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