

RESONANT FEEDING NETWORKS FOR MICROSTRIP ANTENNAS

H. Legay and L. Shafai

*Department of Electrical & Computer Engineering
University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2*

Abstract

A novel technique for feeding microstrip antennas is proposed. The feeding network, made of microstrip lines, is designed to propagate standing waves, instead of traveling waves as usually is done. At its resonance, the incident and reflected signals combine with each other, and results in a stable and periodic field distribution along this network. Thus, coupled patches can be excited with equal magnitude, and either equal phase or phase opposition, depending on the desired radiation pattern. They also bring an additional resonance, which, added to that of the patch enhances the input impedance bandwidth. Also, no power dividers or matching stubs are necessary, leading to constructional simplicity. Three examples of resonant feeding networks are presented (Fig.1), which provide three different resonating modes.

I. The halfwave resonating dipole

The first presented feeding network consists of a halfwave resonating dipole. At the resonance, it exhibits a symmetric current distribution with respect to its center. Let us couple electromagnetically two radiating patches, as displayed in Fig.1a. The open circuited loads of the radiating edges of the feeding dipole are therefore changed into loads equal to the input impedances of the patches. If their value is different from the characteristic impedance of the dipole, the resonance is still excited and the patches are fed in equal magnitude and phase. The resonance of the patch combines itself with that of the feeding dipole, and widen the bandwidth. The impedance plot on the Smith chart indicates a loop, whose size depends on the magnitude of the coupling between the line and the radiator [1]. Thus, a larger separation between the two radiating elements decreases the coupling (Fig.2), but increases the relative radiation of the feeding line compared to that of the patches, and may alter the radiation pattern of the antenna. An improved version of this configuration was realized by widening the line and coupling it to four patches symmetrically arranged on top of its four corners [2].

II. The resonating cross

The second resonant feeding network is made of a symmetric microstrip cross, fed at its center, and made of four arms, or two branches, one longitudinal and the other transversal. The symmetry of the configuration insures that each branch supports the same current distribution. The length of each branch is approximately set to a guided wavelength, so that the second resonant mode TM_{02} is excited longitudinally and transversally. It gives a longer network than the previous one, and can excite four square patches, located on the tips of each arm. However, because the excited mode is an odd mode, the current flowing on two opposite arms are in phase opposition. Then, their resulting radiations cancels at broadside, but add at a constant elevation angle in all planes, Fig.3, which depends on the antenna parameters ($\epsilon_{r_1} = \epsilon_{r_2} = 2.55$, $H_1 = H_2 = 1.58$ mm, $L = 24$ mm, $L_c = 48$ mm, $W_c = 6$ mm, $s = 42$ mm). The relative radiation of the feeding network is approximately constant at about -20 dB, Fig.4, when the feed arms width is smaller than that of the patches. This configuration was also designed for circular polarization.

III. A larger feed network of resonant H

A third and novel configuration is proposed, which presents the advantage of feeding four patches with identical signals in a relatively large aperture. ($\epsilon_{r_1} = \epsilon_{r_2} = 2.55$, $H_1 = H_2 = 1.58$ mm, $L_1 = W_1 = 30$ mm, $s_x = 36$ mm, $s_y = 48$ mm, $L_a = 9$ mm, $L_b = 24$ mm, $L_c = 30$ mm, $W_a = W_b = 6$ mm, $W_a = 12$ mm). It is composed of four arms connected to a common section fed by a probe source. Because of the geometry, the two arms located symmetrically in the H plane, deliver the same excitation signal to electromagnetically coupled patches. Then, each section length is adjusted, so that the total distance between the two opposite arms in the E plane equals approximately one wavelength and a half. Hence, a resonating TM_{30} mode may be excited in this feeding device, giving currents with equal magnitude and phase at its four extremities. The most sensitive parameter of this network is the ratio between the length of the arms and that of the common central section. The ratio of the line widths is also important, since it may be responsible for another resonance, which occurs in the central line, and is generated by the appearance of discontinuities at its junctions. This has to be avoided since it alters the radiation pattern. The impedance of the optimized configuration is wide band and low resistive, Fig.5, and can be changed by modifying the width of the lines. The feeding device radiates 20 dB less than the patches, and

does not distort the radiation pattern. However, it presents high sidelobe levels in the E plane, Fig.6, since the field distribution is too weak at the center of the aperture, representing a central null. They can be reduced by increasing the permittivity of the lower substrate and therefore decreasing the size and the directivity of the array.

References

- [1] H. Legay and L. Shafai, "Parametric analysis of an EMC patch surrounded by parasitic elements", submitted to publication to Proc. IEE.
- [2] H. Legay and L. Shafai, "A new stacked microstrip antenna with large bandwidth and high gain", submitted to publication to Proc. IEE.

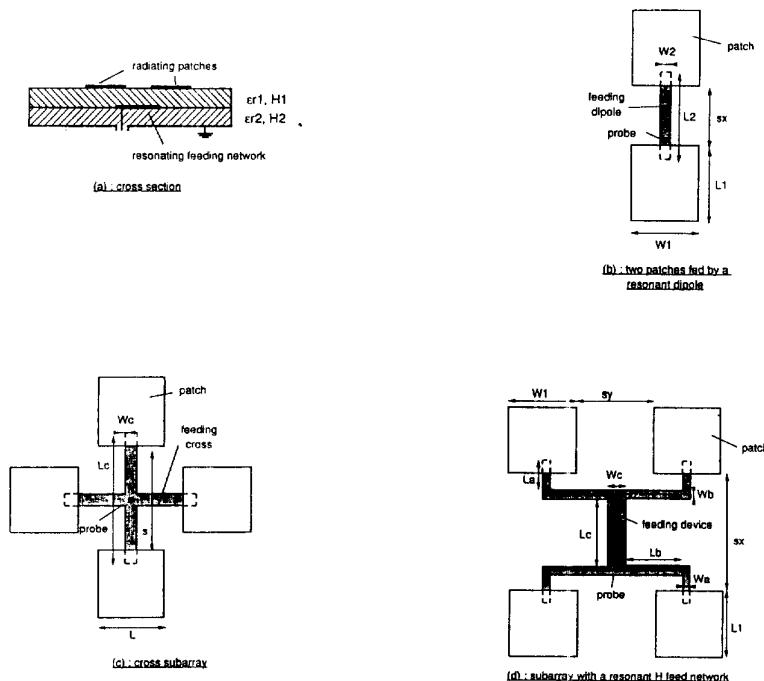


Fig.1 : Examples of subarrays using a resonant feeding network

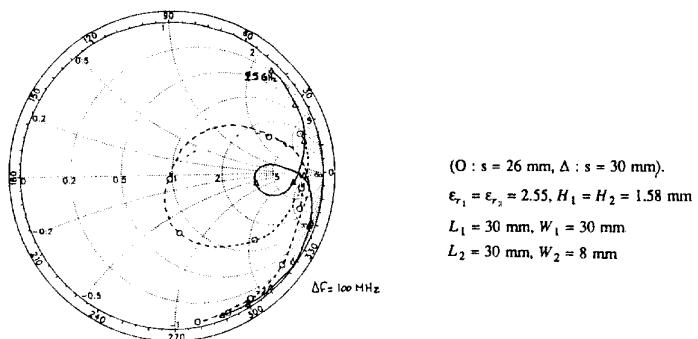


Fig.2 : Input impedance for different separations between the two upper patches.

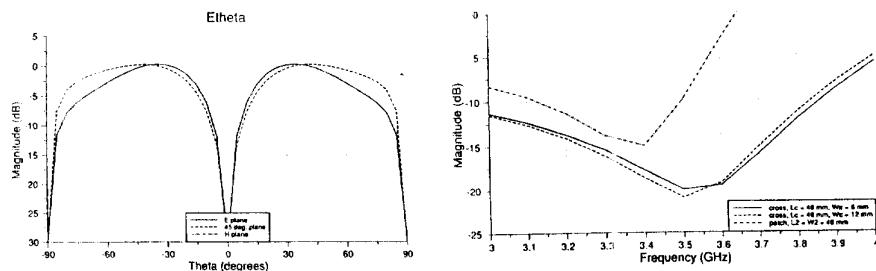


Fig.4 : Relative radiation of the feed network.

Fig.3 : Radiation Pattern of a cross subarray *

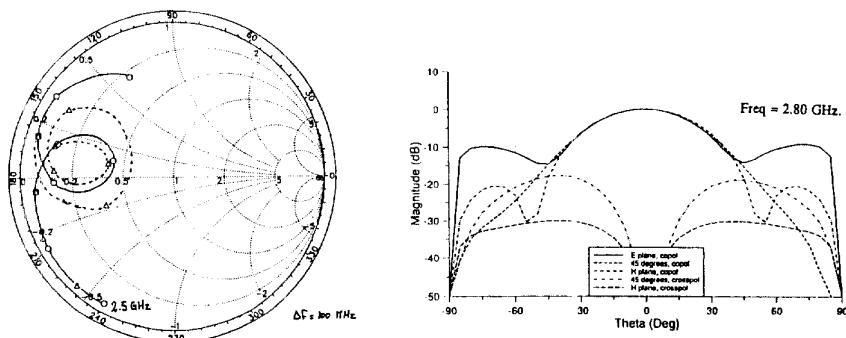


Fig.5 : Input impedance of a subarray with a resonant H feed network. (O : $W_c = 12$ mm, Δ : $W_c = 30$ mm)

Fig.6 : Radiation pattern.

如何学习天线设计

天线设计理论晦涩高深，让许多工程师望而却步，然而实际工程或实际工作中在设计天线时却很少用到这些高深晦涩的理论。实际上，我们只需要懂得最基本的天线和射频基础知识，借助于 HFSS、CST 软件或者测试仪器就可以设计出工作性能良好的各类天线。

易迪拓培训(www.edatop.com)专注于微波射频和天线设计人才的培养，推出了一系列天线设计培训视频课程。我们的视频培训课程，化繁为简，直观易学，可以帮助您快速学习掌握天线设计的真谛，让天线设计不再难…

HFSS 天线设计培训课程套装

套装包含 6 门视频课程和 1 本图书，课程从基础讲起，内容由浅入深，理论介绍和实际操作讲解相结合，全面系统的讲解了 HFSS 天线设计的全过程。是国内最全面、最专业的 HFSS 天线设计课程，可以帮助你快速学习掌握如何使用 HFSS 软件进行天线设计，让天线设计不再难…

课程网址: <http://www.edatop.com/peixun/hfss/122.html>

CST 天线设计视频培训课程套装

套装包含 5 门视频培训课程，由经验丰富的专家授课，旨在帮助您从零开始，全面系统地学习掌握 CST 微波工作室的功能应用和使用 CST 微波工作室进行天线设计实际过程和具体操作。视频课程，边操作边讲解，直观易学；购买套装同时赠送 3 个月在线答疑，帮您解答学习中遇到的问题，让您学习无忧。

详情浏览: <http://www.edatop.com/peixun/cst/127.html>

13.56MHz NFC/RFID 线圈天线设计培训课程套装

套装包含 4 门视频培训课程，培训将 13.56MHz 线圈天线设计原理和仿真设计实践相结合，全面系统地讲解了 13.56MHz 线圈天线的工作原理、设计方法、设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体操作，同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试。通过该套课程的学习，可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹配电路的原理、设计和调试…

详情浏览: <http://www.edatop.com/peixun/antenna/116.html>

关于易迪拓培训:

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立，一直致力和专注于微波、射频、天线设计研发人才的培养；后于 2006 年整合合并微波 EDA 网(www.mweda.com)，现已发展成为国内最大的微波射频和天线设计人才培养基地，成功推出多套微波射频以及天线设计经典培训课程和 ADS、HFSS 等专业软件使用培训课程，广受客户好评；并先后与人民邮电出版社、电子工业出版社合作出版了多本专业图书，帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、研通高频、埃威航电、国人通信等多家国内知名公司，以及台湾工业技术研究院、永业科技、全一电子等多家台湾地区企业。

我们的课程优势:

- ※ 成立于 2004 年，10 多年丰富的行业经验
- ※ 一直专注于微波射频和天线设计工程师的培养，更了解该行业对人才的要求
- ※ 视频课程、既能达到了现场培训的效果，又能免除您舟车劳顿的辛苦，学习工作两不误
- ※ 经验丰富的一线资深工程师主讲，结合实际工程案例，直观、实用、易学

联系我们:

- ※ 易迪拓培训官网: <http://www.edatop.com>
- ※ 微波 EDA 网: <http://www.mweda.com>
- ※ 官方淘宝店: <http://shop36920890.taobao.com>