A Frequency Selective Surface (FSS) is a periodic assembly of one- or two-dimensional resonant structures, either as apertures in a thin conducting sheet or as metallic patches on a substrate, which may have a band-pass or band-stop function respectively. The increasing interest within the high-frequency community in this sort of structure has also made its accurate simulation increasingly important. This tutorial describes how a FSS structure may be simulated efficiently using CST MICROWAVE STUDIO®. A simple unit cell of a ring resonator band-stop infinite array is considered as an example.

Contents:

1. Introduction
 a. Physical Description
 b. CST MWS Model
2. Simulation Results
3. Parameter Sweep
4. Conclusion

1. Introduction

1.a) Physical Description

Frequency selective surfaces are increasingly used for the frequency filtering of plane waves in radar or communications systems. A one- or two-dimensional periodic array of resonant structures on a backing material, either apertures in a metallic sheet or metallic patches on a substrate, acts as a filter for a plane wave arriving from any angle of incidence. In this example an array of full wavelength resonant conducting rings on a dielectric substrate is simulated. Since the FSS would be used on curved structures like radomes, it is desirable that the FSS have the same resonant frequency for all incident plane wave angles. For a given polarisation, ring resonators are known to be stable with the scan angle. CST MICROWAVE STUDIO® (CST MWS) can be used to establish the angular dependence of the resonant frequency.
1.b) CST MICROWAVE STUDIO® (CST MWS) Model: Parameter Definition and Preliminary Settings

The simulation of an entire array of resonant rings would be prohibitively time and memory consuming. The use of CST MWS’s unit cell boundary conditions in the directions of periodicity allows a rapid but no less accurate simulation of large surfaces. Setting up the simulation may be greatly eased by using the “FSS – Unit Cell (FD)” template, which automatically applies unit cell boundary conditions in the x- and y-directions and sets up Floquet port excitations in the positive and negative z-directions. There is no need to define master and slave boundary conditions; the phase relation of the opposing boundaries is automatically set by specifying the incident angle of the inward travelling plane wave.

It is only necessary to construct a single ring on its backing substrate. Construction of the geometry itself is simple: a substrate is defined using a brick primitive object, and then a hollow cylinder can be used to create the ring. The conducting ring is a “lossy metal” type copper, and the substrate is Arlon AD 300 with a relative permittivity of 3.

Figure 1. The FSS - Unit Cell template simplifies simulation set-up by automatically setting the unit cell boundary conditions.

The incident angle of the incoming plane wave may be specified by setting angles Theta and Phi, both of which have already been parameterized by the template. The periodicity of the FSS is also freely configurable as shown below. Different periodicities can be assigned in the x- and y-directions, and the use of a skewed lattice is also possible by specifying the grid angle (this can be useful for simulating compact closely coupled arrays).
Figure 2. The incident plane wave angle and unit cell periodicity of the FSS are freely configurable.

For off-normal incident angles the Floquet port modes ensure that the reflected wave is recorded in the direction of optical reflection, while the transmission is in the same direction as the incident wave. This is elucidated by the figure below.

Figure 3. Incident and transmitted directions are automatically set by the Floquet modes.

The periodicity can also be specified, as in this example, by setting the size of the substrate to the desired periodicity, then checking the “Fit unit cell to bounding box” checkbox.
The default Floquet port settings excite two plane waves with orthogonal electric fields as shown below (TE(0,0) and TM(0,0) modes), but higher order modes may also be specified in the port properties dialog (“Details”). Co-polar and cross-polar coupling between the modes, both reflection and transmission, are represented in terms of S-parameters. The co-polarised reflection of mode 1 at port Zmin would thus, for example, be named \(S_{Z\min(1),Z\min(1)} \), and the cross-polarised transmission between modes 2 and 1 \(S_{Z\max(1),Z\min(2)} \).
Higher order or circularly polarised Floquet modes may be defined.

Once the geometry is constructed, the simulation conditions are set up, and some field monitors have been defined, the frequency solver can be started (with either a hexahedral or tetrahedral mesh).

2. Simulation Results

Of primary interest in this case are the S-parameter results, which represent the reflection from and transmission through the FSS. The co-polar reflections and transmissions of both modes are almost identical due to the symmetrical circular rings (the slight difference is due to the tetrahedral mesh). The transmission is almost completely blocked at 15.02 GHz, as seen from the $\text{SZmin}(1), \text{Zmax}(1)$ of about -63 dB, and the reflection is almost complete ($\text{SZmax}(1), \text{Zmax}(1) \approx -0.006$ dB).
Figure 7. Reflection from and transmission through the FSS.

A view of the electric field magnitudes at 15.02 GHz (which can be calculated after the simulation by using the “Calculate fields at axis marker” option) reveals the two full-wavelength resonances due to the two Floquet port modes.

Figure 8. Electric fields at 15.02 GHz show the two Floquet port mode resonances.
3. Parameter sweep analysis

As mentioned previously, the dependence of the FSS resonant frequency on the angle of the incident plane wave is of interest. A parameter sweep can be set up to vary the incident angle, in this case theta from 0 to 50 degrees, and the reflection and transmission coefficients can be investigated as an automated post-processing step.

The transmission coefficient of the TE mode shows greater dependence on variation of the scan angle in theta than the TM mode does. This is to be expected since the incident wave’s direction of incidence has not changed relative to the top and bottom of the rings (as oriented in the field plots above), only to the left and right.
Figure 10. Effect of varying theta on transmission of the TE mode through the FSS.

Figure 11. Effect of varying theta on transmission of the TM mode through the FSS.

4. Conclusion

This tutorial has described how CST MWS may be used for the simulation of frequency selective surfaces. The set up of the simulation may be greatly simplified by using a template which configures the simulation appropriately and
generates Floquet port modes with parameterized incident angle of the plane wave. Once the geometry of a single cell has been constructed the periodicity can be set up very flexibly. Reflections from and transmissions through the FSS can be observed easily using the familiar S-parameter representation. Finally, a parameter sweep of the incident wave angle can be performed to investigate its effect on the performance of the FSS.
CST 视频培训课程推荐

CST 微波工作室 (CST Microwave Studio) 是 CST 工作室套装中最核心的一个子软件，主要用于三维电磁问题的仿真分析，可计算任意结构任意材料电大宽带的电磁问题。广泛应用于高频/微波无源器件的仿真设计、各种类型的天线设计、雷达散射截面分析、电磁兼容分析和信号完整性分析等各个方面。

易迪拓培训 (www.edatop.com) 推出的 CST 微波工作室视频培训课程由经验丰富的专家授课，旨在帮助用户能够快速地学习掌握 CST 微波工作室的各项功能、使用操作和工程应用。购买 CST 教学视频培训课程套装，还可超值赠送 3 个月免费在线学习答疑，让您学习无忧。

CST 学习培训课程套装

该培训套装由易迪拓培训联合微波 EDA 网共同推出，是最全面、系统、专业的 CST 微波工作室培训课程套装，所有课程都由经验丰富的专家授课，视频教学，可以帮助您从零开始，全面系统地学习 CST 微波工作室的各项功能及其在微波射频、天线设计等领域的设计应用。且购买该套装，还可超值赠送 3 个月免费学习答疑...

HFSS 天线设计培训课程套装

套餐共含 5 门视频培训课程，课程从基础讲起，内容由浅入深，理论介绍和实际操作讲解相结合，全面系统的讲解了 CST 微波工作室天线设计的全过程。是国内最全面、最专业的 CST 天线设计课程，可以帮助您快速学习掌握如何使用 CST 设计天线，让天线设计不再难...

课程网址：http://www.edatop.com/peixun/cst/127.html

更多 CST 视频培训课程：

- CST 微波工作室入门与应用详解 — 中文视频教程

- CST 微波工作室天线设计详解 — 中文视频培训教程

- CST 阵列天线仿真设计实例详解 — 中文视频教程
 阵列天线设计专业性要求很高，因此相关培训课程是少之又少，该门培训课程由易迪拓培训重金聘请专家讲解；课程网址：http://www.edatop.com/peixun/cst/123.html

- 更多 CST 培训课程，敬请浏览：http://www.edatop.com/peixun/cst
关于易迪拓培训：

易迪拓培训(www.edatop.com)由多名研发第一线的资深工程师发起成立，一直致力于微波、射频、天线设计研发人才的培养；后于2006年整合合并微波EDA网(www.mweda.com)，现已发展成为国内最大的微波射频和天线设计人才培养基地，成功推出了多套微波射频以及天线设计相关培训课程和ADS、HFSS等专业软件使用培训课程，广受客户好评；并与人民邮电出版社、电子工业出版社合作出版了多本专业图书，帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、研通高频、埃威航电、国人通信等多家国内知名公司，以及台湾工业技术研究院、永业科技、全一电子等多家台湾地区企业。

我们的课程优势：

※ 成立于2004年，10多年丰富的行业经验
※ 一直专注于微波射频和天线设计工程师的培养，更了解行业对人才的要求
※ 视频课程，既能达到现场培训的效果，又能免除舟车劳顿的辛苦，学习工作两不误
※ 经验丰富的一线资深工程师讲授，结合实际工程案例，直观、实用、易学

联系我们：

※ 易迪拓培训官网：http://www.edatop.com
※ 微波EDA网：http://www.mweda.com
※ 官方淘宝店：http://shop36920890.taobao.com