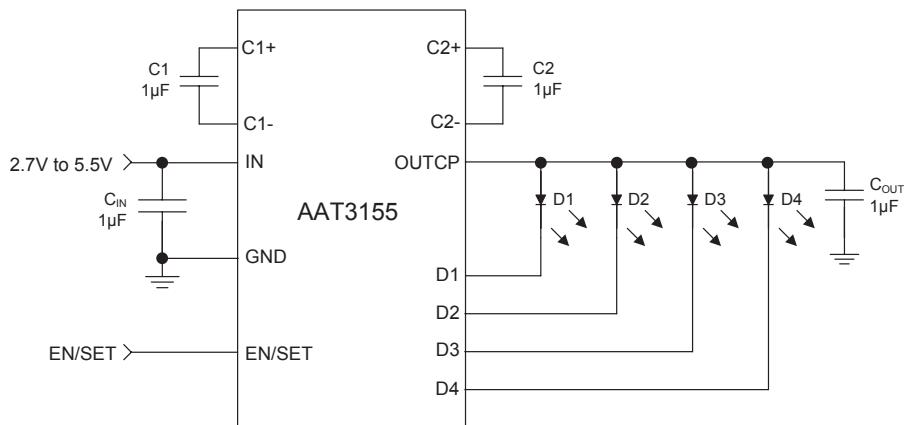


General Description


The AAT3155 is a low noise, constant frequency charge pump DC/DC converter that uses a tri-mode load switch (1X), fractional (1.5X), and doubling (2X) conversion to maximize efficiency for white LED applications. The AAT3155 is capable of driving up to four channels of LEDs at 20mA per channel from a 2.7V to 5.5V input. The current sinks may be operated individually or in parallel for driving higher current LEDs. A low external parts count (two 1 μ F flying capacitors and two small 1 μ F capacitors at IN and OUTCP) make this part ideally suited for small, battery-powered applications.

AnalogicTech's S²CwireTM (Simple Serial ControlTM) serial digital input is used to enable, disable, and set current for each LED with 16 settings down to 50 μ A. The low-current mode supply current can be as low as 50 μ A to save power.

Each output of the AAT3155 is equipped with built-in protection for output short-circuit and auto-disable for load short-circuit conditions. Built-in soft-start circuitry prevents excessive inrush current during start-up. A low-current shutdown feature disconnects the load from the input and reduces quiescent current to less than 1 μ A.

The AAT3155 is available in a Pb-free, space-saving 2.85x3.0mm 12-pin TSOPJW package.

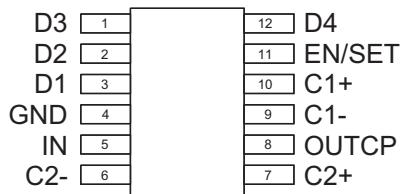
Typical Application

Features

- V_{IN} Range: 2.7V to 5.5V
- Fully Programmable Current with Single Wire
 - 16 Current Levels
 - Four Low Current Settings Down to 50 μ A
- Low I_Q (50 μ A) for Low Current Mode
- Tri-Mode 1X, 1.5X, and 2X Charge Pump for Maximum Efficiency and V_F Coverage
- Drives up to Four Channels of LEDs
- No Inductors, Low Noise Operation
- 1MHz Constant Switching Frequency
- Small Application Circuit
- Built-In Thermal Protection
- Automatic Soft Start
- $I_Q < 1\mu$ A in Shutdown
- 2.85x3.0mm TSOPJW-12 Package

ChargePumpTM

Applications


- Color (RGB) Lighting
- Programmable Current Sinks
- White LED Backlighting
- White Photo Flash for Digital Still Cameras

Pin Descriptions

Pin #	Symbol	Function
1	D3	Current sink input #3.
2	D2	Current sink input #2.
3	D1	Current sink input #1.
4	GND	Ground.
5	IN	Input power supply. Requires 1µF capacitor connected between this pin and ground.
6	C2-	Flying capacitor 2 negative terminal.
7	C2+	Flying capacitor 2 positive terminal. Connect a 1µF capacitor between C2+ and C2-.
8	OUTCP	Charge pump output to drive load circuit. Requires 1µF capacitor connected between this pin and ground.
9	C1-	Flying capacitor 1 negative terminal.
10	C1+	Flying capacitor 1 positive terminal. Connect a 1µF capacitor between C1+ and C1-.
11	EN/SET	S ² Cwire serial interface control pin.
12	D4	Current sink input #4.

Pin Configuration

TSOPJW-12
(Top View)

Absolute Maximum Ratings¹

Symbol	Description	Value	Units
V_{IN}	Input Voltage to GND	-0.3 to 6	V
$V_{EN/SET}$	EN/SET Voltage to GND	-0.3 to V_{IN} + 0.3	V
I_{OUT}^2	Maximum DC Output Current	150	mA
T_J	Operating Junction Temperature Range	-40 to 150	°C
T_{LEAD}	Maximum Soldering Temperature (at leads, 10 sec)	300	°C

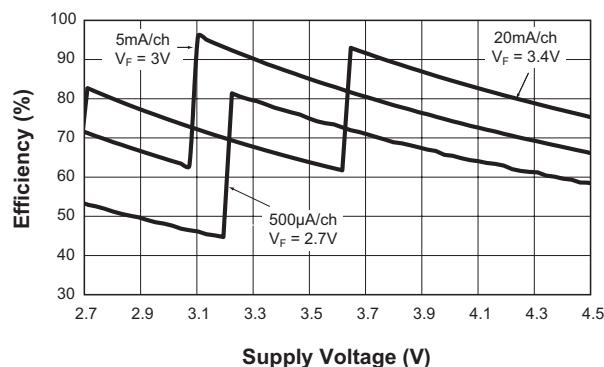
Thermal Information³

Symbol	Description	Value	Units
P_D	Maximum Power Dissipation ⁴	0.625	W
θ_{JA}	Maximum Thermal Resistance	160	°C/W

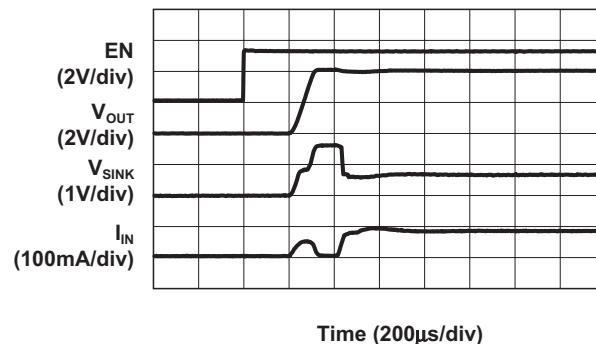
1. Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at conditions other than the operating conditions specified is not implied. Only one Absolute Maximum Rating should be applied at any one time.
2. Based on long-term current density limitation.
3. Mounted on an FR4 board.
4. Derate 6.25mW/°C above 25°C.

Electrical Characteristics¹

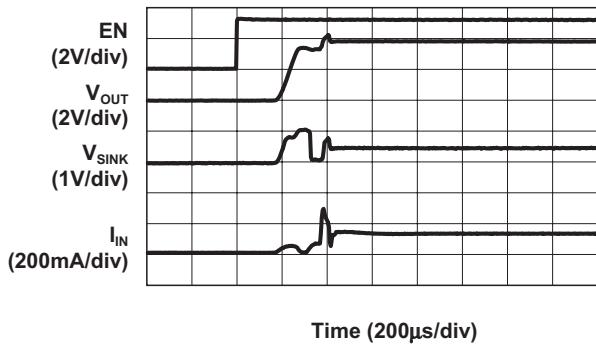
$C_{IN} = C_{OUT} = C_1 = C_2 = 1.0\mu F$; $T_A = -40^\circ C$ to $+85^\circ C$, unless otherwise noted.
 Typical values are $T_A = 25^\circ C$, $V_{IN} = 3.6V$.

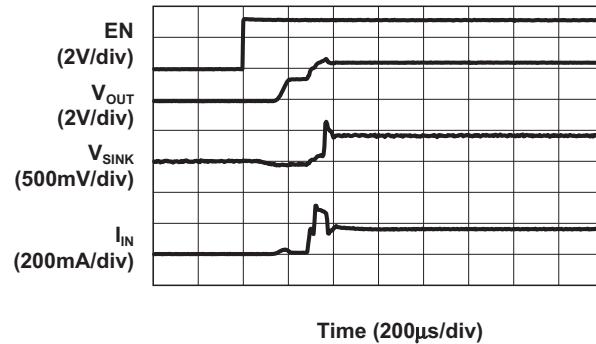

Symbol	Description	Conditions	Min	Typ	Max	Units
Input Power Supply						
V_{IN}	Operation Range		2.7		5.5	V
I_{CC}	Operating Current	1X Mode, $3.0 \leq V_{IN} \leq 5.5$, Active, No Load Current		0.3	1	mA
		1.5X Mode, $3.0 \leq V_{IN} \leq 5.5$, Active, No Load Current		1	3	
		2X Mode, $3.0 \leq V_{IN} \leq 5.5$, Active, No Load Current		1		
		50 μA Setting, 1X Mode		50		
I_{SHDN}	Shutdown Current	$V_{EN/SET} = 0V$			1	μA
I_{DX}	I_{SINK} Average Current Accuracy	$I_{SET} = 20mA$, $T_A = 25^\circ C$	18	20	22	mA
$I_{(D-Match)}$	Current Matching ²	$V_F:D1:D4=3.6V$		0.5	1	%
V_{TH}	1X to 1.5X or 1.5X to 2X Transition Threshold at Any I_{SINK} Pin			150		mV
Charge Pump Section						
T_{SS}	Soft-Start Time			100		μs
F_{CLK}	Clock Frequency			1000		kHz
EN/SET						
$V_{EN(L)}$	Enable Threshold Low	$V_{IN} = 2.7V$			0.4	V
$V_{EN(H)}$	Enable Threshold High	$V_{IN} = 5.5V$	1.4			V
T_{EN/SET_LO}	EN/SET Low Time		0.3		75	μs
T_{EN/SET_HI_MIN}	Minimum EN/SET High Time			50		ns
T_{EN/SET_HI_MAX}	Maximum EN/SET High Time				75	μs
T_{OFF}	EN/SET Off Timeout				500	μs
T_{LAT}	EN/SET Latch Timeout				500	μs
$I_{EN/SET}$	EN/SET Input Leakage		-1		1	μA

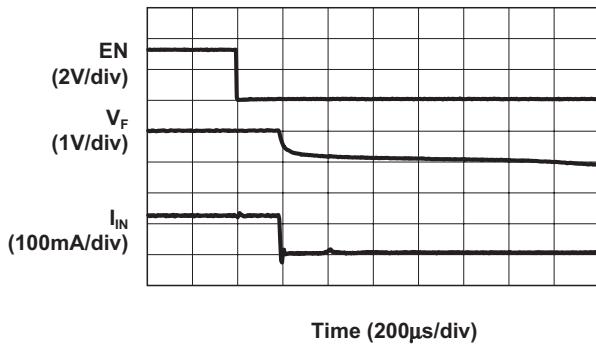
1. The AAT3155 is guaranteed to meet performance specifications over the $-40^\circ C$ to $+85^\circ C$ operating temperature range and is assured by design, characterization, and correlation with statistical process controls.
2. Current matching is defined as the deviation of any sink current from the average of all active channels.

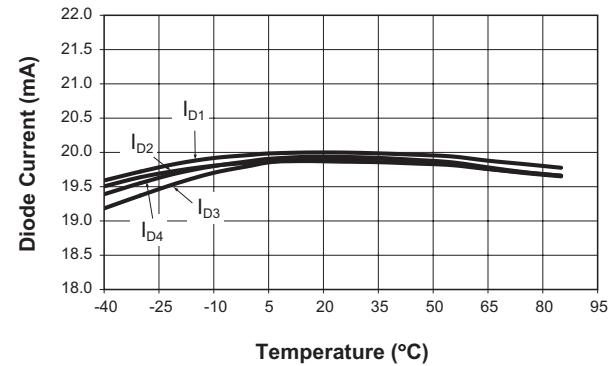

Typical Characteristics

$C_{IN} = C_{OUT} = C_1 = C_2 = 1.0\mu F$; $T_A = 25^\circ C$, $V_{IN} = 3.6V$, unless otherwise noted.

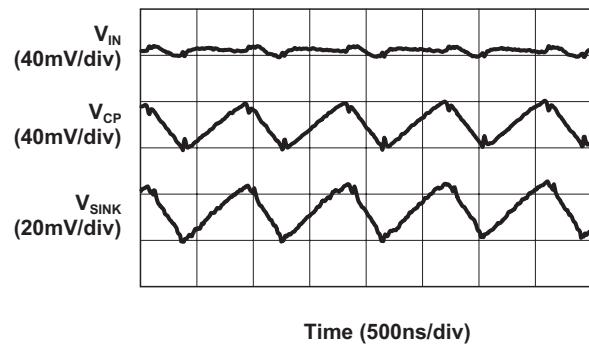

Efficiency vs. Supply Voltage

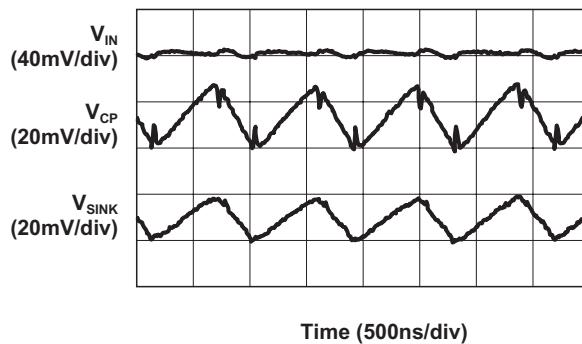

Turn-On to 1X Mode ($V_{IN} = 4.2V$; 20mA Load)


Turn-On to 1.5X Mode ($V_{IN} = 3.5V$; 20mA Load)

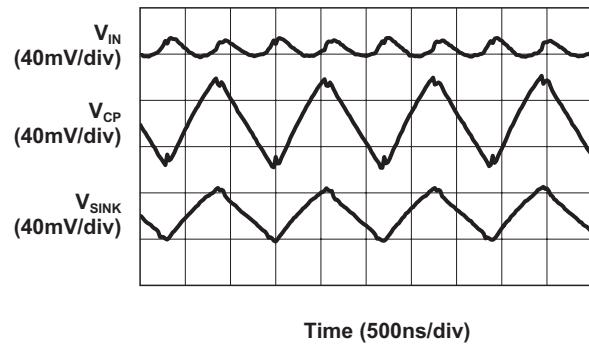

Turn-On to 2X Mode ($V_{IN} = 2.8V$; 20mA Load)

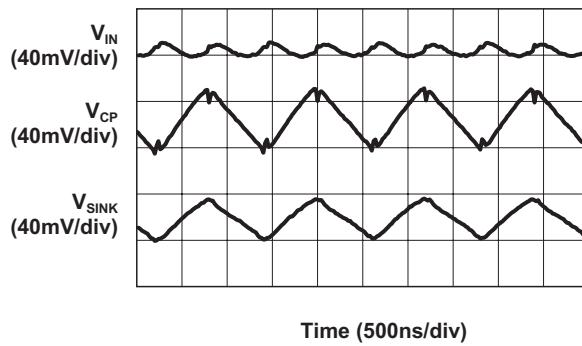
Turn-Off from 1.5X Mode ($V_{IN} = 3.5V$; 20mA Load)

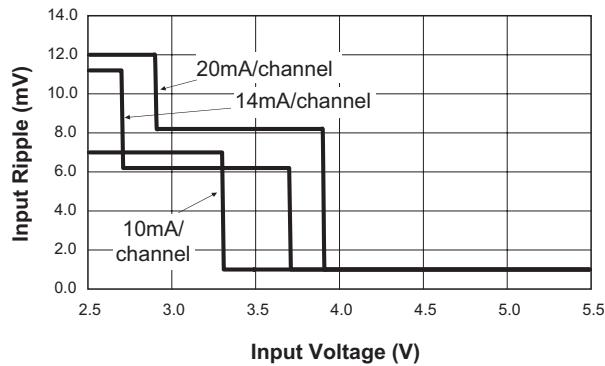

Diode Current vs. Temperature (20mA/channel)

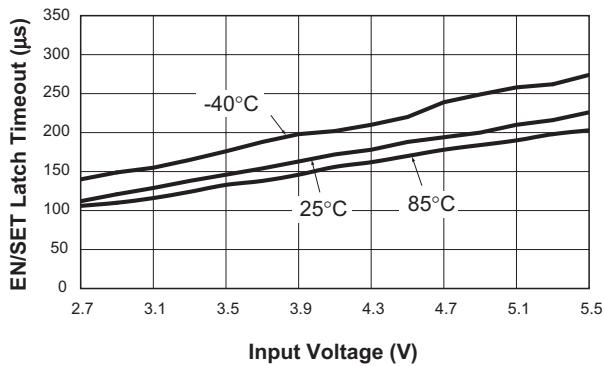

Typical Characteristics

$C_{IN} = C_{OUT} = C_1 = C_2 = 1.0\mu F$; $T_A = 25^\circ C$, $V_{IN} = 3.6V$, unless otherwise noted.

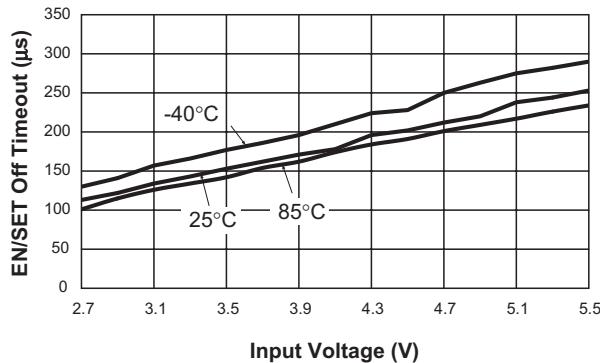

Load Characteristics
($V_{IN} = 3.9V$; 1.5X Mode; 20mA Load)

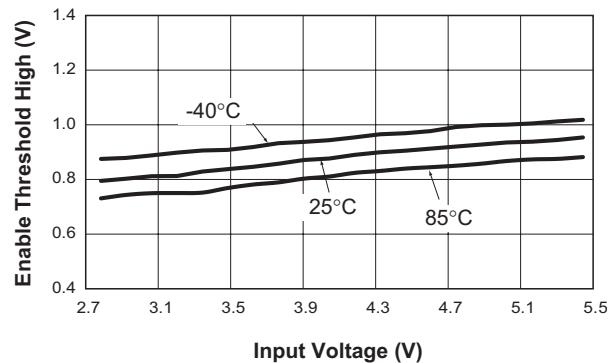

Load Characteristics
($V_{IN} = 3.9V$; 1.5X Mode; 14mA Load)


Load Characteristics
($V_{IN} = 2.9V$; 2X Mode; 20mA Load)

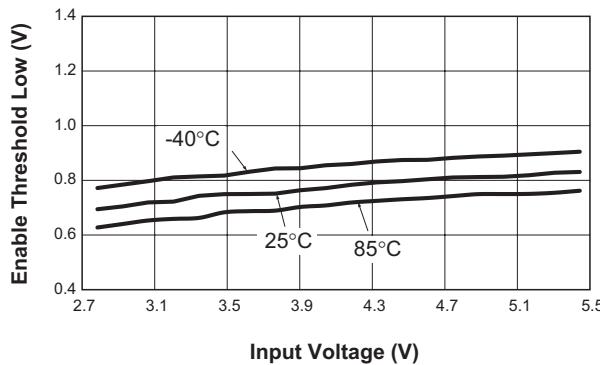

Load Characteristics
($V_{IN} = 2.9V$; 2X Mode; 14mA Load)

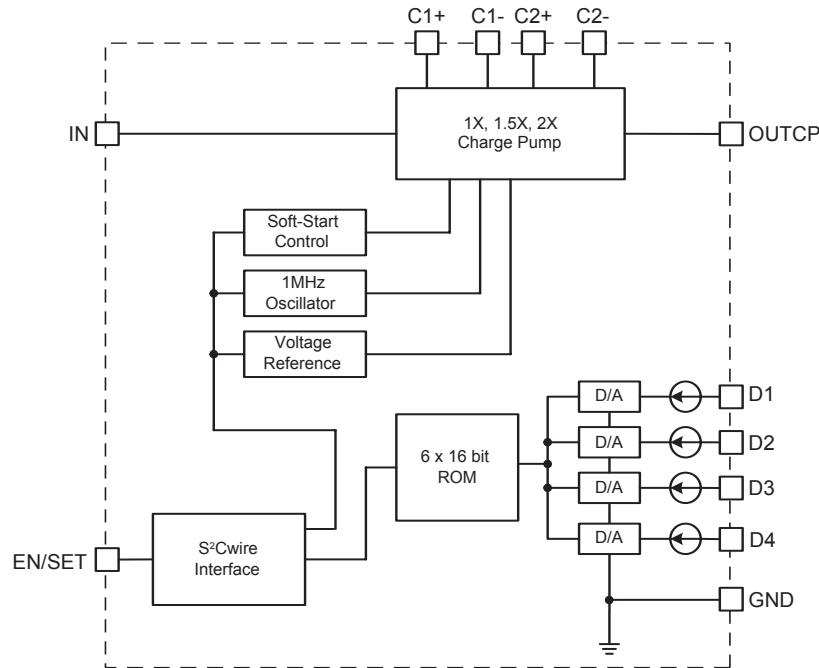
Input Ripple vs. Input Voltage


EN/SET Latch Timeout vs. Input Voltage


Typical Characteristics

$C_{IN} = C_{OUT} = C_1 = C_2 = 1.0\mu F$; $T_A = 25^\circ C$, $V_{IN} = 3.6V$, unless otherwise noted.


EN/SET Off Timeout vs. Input Voltage


Enable Threshold High vs. Input Voltage

Enable Threshold Low vs. Input Voltage

Functional Block Diagram

Functional Description

The AAT3155 is a tri-mode load switch (1X) and high efficiency (1.5X or 2X) charge pump device intended for white LED backlight applications. To maximize power conversion efficiency, an internal sensing circuit monitors the voltage required on each constant current sink input and sets the load switch and charge pump modes based on the input battery voltage and the current sink input voltage. As the battery discharges over time, the AAT3155 charge pump is enabled when any of the four current sink inputs nears dropout. The charge pump initially starts in 1.5X mode. If the charge pump output droops enough for any current source output to become close to dropout, the charge pump will automatically transition to 2X mode. The AAT3155 requires only four external components: two 1 μ F ceramic capacitors for the charge pump flying capacitors (C_1 and C_2), one 1 μ F ceramic input capacitor (C_{IN}), and one 0.33 μ F to 1 μ F ceramic charge pump output capacitor (C_{OUT}).

The four constant current sink inputs (D1 to D4) can drive four individual LEDs with a maximum current of 20mA each. The unused sink inputs must be connected to OUTCP, otherwise the part will operate only in 2X charge pump mode. The S²Cwire serial interface enables the AAT3155 and sets the current sink magnitudes.

Constant Current Output Level Settings

The constant current sink levels for D1 to D4 are set via the serial interface according to a logarithmic scale for the first 12 codes and a separate low-current scale for the last four codes. For the first 12 codes, each code is approximately 1.5dB lower than the previous code. In this manner, LED brightness appears linear with each increasing code count. Because the inputs D1 to D4 are true independent constant current sinks, the voltage observed on any single given input will be determined by the actual forward voltage (V_F) for the LED being driven.

Since the input current sinks of the AAT3155 are programmable, no PWM (pulse width modulation) or

additional control circuitry is needed to control LED brightness. This feature greatly reduces the burden on a microcontroller or system IC to manage LED or display brightness, allowing the user to "set it and forget it." With its high-speed serial interface (1MHz data rate), the input sink current of the AAT3155 can be changed successively to brighten or dim LEDs, in smooth transitions (e.g., to fade-out) or in abrupt steps, giving the user complete programmability and real-time control of LED brightness.

S²Cwire Serial Interface

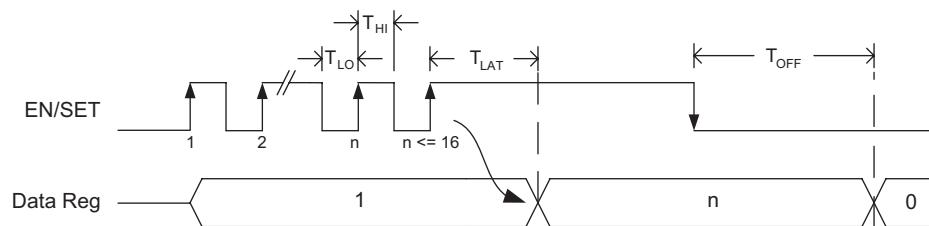
The current level magnitude is controlled by AnalogTech's Simple Serial Control (S²Cwire) serial interface. The interface records rising edges of the EN/SET pin and decodes them into 16 different states. The 16 current level settings available are indicated in Table 1.

Data	Output (mA/Ch)	Data	Output (mA/Ch)
1	20.0	9	5.0
2	17.0	10	4.2
3	14.0	11	3.4
4	12.0	12	2.8
5	10.0	13	1.0
6	8.6	14	0.5
7	7.0	15	0.1
8	6.0	16	0.05

Table 1: Current Level Settings.

The S²Cwire serial interface has flexible timing. Data can be clocked-in at speeds greater than 1MHz, or much slower, such as 15kHz. After data is submitted, EN/SET is held high to latch the data. Once EN/SET has been held in the logic high state for time T_{LAT} , the programmed current becomes active and the internal data register is reset to zero. For subsequent current level programming, the number of rising edges corresponding to the desired code must be entered on the EN/SET pin.

When EN/SET is held low for an amount of time greater than T_{OFF} , the AAT3155 enters into shutdown mode and draws less than 1 μ A from V_{IN} . The internal data register is reset to zero during shutdown.


Auto-Disable Feature

The AAT3155 is equipped with an auto-disable feature for each LED channel. After the IC is enabled and started up, a test current of 100 μ A (typical) is forced through each sink channel. The channel will be disabled if the voltage of that particular SINK pin does not drop to a certain threshold. This feature is very convenient for disabling an unused channel or during an LED fail-short event.

Thermal Protection

The AAT3155 has a thermal protection circuit that will shut down the charge pump if the die temperature rises above the thermal limit, as would be the case during a short circuit of the OUTCP pin.

S²Cwire Serial Interface Timing

Applications Information

Although the AAT3155 is designed for driving white LEDs, the device also can be used to drive most types of LEDs with forward voltage specifications ranging from 2.0V to 4.7V. LED applications may include main and sub-LCD display backlighting, camera photo-flash applications, color (RGB) LEDs, infrared (IR) diodes for remotes, and other loads benefiting from a controlled output current generated from a varying input voltage. Since the D1 to D4 input current sinks are matched with negligible voltage dependence, the LED brightness will be matched regardless of the specific LED forward voltage (V_F) levels. In some instances (e.g., in high luminous output applications such as photo flash), it may be necessary to drive high- V_F type LEDs. The low-dropout current-sinks in the AAT3155 make it capable of driving LEDs with forward voltages as high as 4.7V at full current from an input supply as low as 3.0V. Outputs can be paralleled to drive high-current LEDs without complication.

Device Switching Noise Performance

The AAT3155 operates at a fixed frequency of approximately 1MHz to control noise and limit harmonics that can interfere with the RF operation of cellular telephone handsets or other communication devices. Back-injected noise appearing on the input pin of the charge pump is 20mV peak-to-peak, typically ten times less than inductor-based DC/DC boost converter white LED backlight solutions. The AAT3155 soft-start feature prevents noise transient effects associated with inrush currents during start-up of the charge pump circuit.

Capacitor Selection

Careful selection of the four external capacitors C_{IN} , C_1 , C_2 , and C_{OUT} is important because they will affect turn-on time, output ripple, and transient performance. Optimum performance will be obtained when low equivalent series resistance (ESR) ceramic capacitors are used. In general, low ESR may be defined as less than 100mΩ. A value of 1μF for all four capacitors is a good starting point

when choosing capacitors. If the LED current sources are programmed only for light current levels, then the capacitor size may be decreased.

Capacitor Characteristics

Ceramic composition capacitors are highly recommended over all other types of capacitors for use with the AAT3155. Ceramic capacitors offer many advantages over their tantalum and aluminum electrolytic counterparts. A ceramic capacitor typically has very low ESR, is lowest cost, has a smaller PCB footprint, and is non-polarized. Low ESR ceramic capacitors help to maximize charge pump transient response. Since ceramic capacitors are non-polarized, they are not prone to incorrect connection damage.

Equivalent Series Resistance

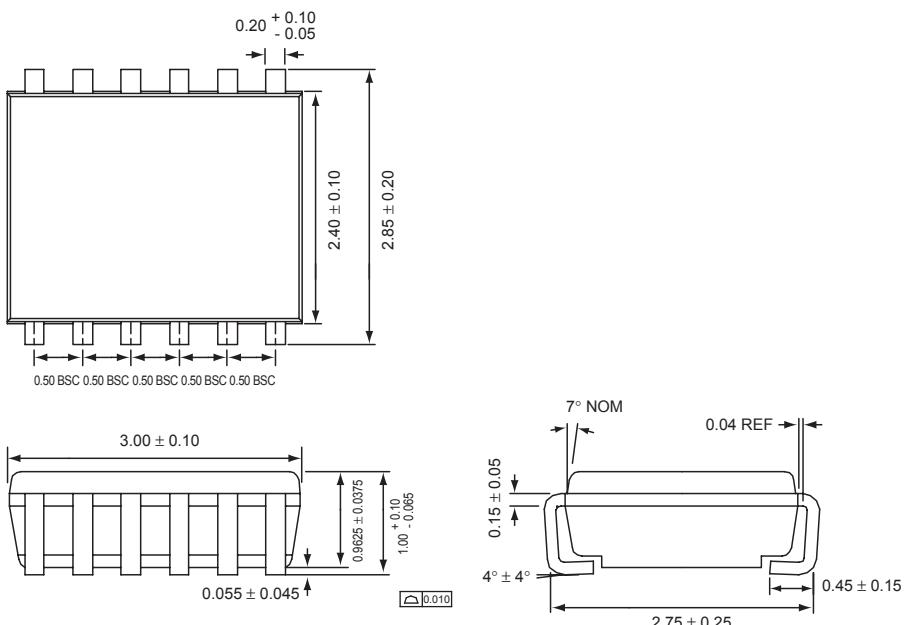
ESR is an important characteristic to consider when selecting a capacitor. ESR is a resistance internal to a capacitor that is caused by the leads, internal connections, size or area, material composition, and ambient temperature. Capacitor ESR is typically measured in milliohms for ceramic capacitors and can range to more than several ohms for tantalum or aluminum electrolytic capacitors.

Ceramic Capacitor Materials

Ceramic capacitors less than 0.1μF are typically made from NPO or C0G materials. NPO and C0G materials generally have tight tolerance and are very stable over temperature. Larger capacitor values are usually composed of X7R, X5R, Z5U, or Y5V dielectric materials. Large ceramic capacitors (i.e., greater than 2.2μF) are often available in low-cost Y5V and Z5U dielectrics, but capacitors greater than 1μF are not typically required for AAT3155 applications.

Capacitor area is another contributor to ESR. Capacitors that are physically large will have a lower ESR when compared to an equivalent material smaller capacitor. These larger devices can improve circuit transient response when compared to an equal value capacitor in a smaller package size.

Ordering Information


Package	Marking ¹	Part Number (Tape and Reel) ²
TSOPJW-12	QOXYY	AAT3155ITP-T1

All AnalogicTech products are offered in Pb-free packaging. The term "Pb-free" means semiconductor products that are in compliance with current RoHS standards, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. For more information, please visit our website at <http://www.analogitech.com/pbfree>.

Package Information

TSOPJW-12

All dimensions in millimeters.

1. XYY = assembly and date code.
2. Sample stock is generally held on part numbers listed in **BOLD**.

© Advanced Analogic Technologies, Inc.

AnalogicTech cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AnalogicTech product. No circuit patent licenses, copyrights, mask work rights, or other intellectual property rights are implied. AnalogicTech reserves the right to make changes to their products or specifications or to discontinue any product or service without notice. Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. AnalogicTech warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with AnalogicTech's standard warranty. Testing and other quality control techniques are utilized to the extent AnalogicTech deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed.

AnalogicTech and the AnalogicTech logo are trademarks of Advanced Analogic Technologies Incorporated. All other brand and product names appearing in this document are registered trademarks or trademarks of their respective holders.

Advanced Analogic Technologies, Inc.
830 E. Arques Avenue, Sunnyvale, CA 94085
Phone (408) 737-4600
Fax (408) 737-4611

射频和天线设计培训课程推荐

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立，致力并专注于微波、射频、天线设计研发人才的培养；我们于 2006 年整合合并微波 EDA 网(www.mweda.com)，现已发展成为国内最大的微波射频和天线设计人才培养基地，成功推出多套微波射频以及天线设计经典培训课程和 ADS、HFSS 等专业软件使用培训课程，广受客户好评；并先后与人民邮电出版社、电子工业出版社合作出版了多本专业图书，帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、研通高频、埃威航电、国人通信等多家国内知名公司，以及台湾工业技术研究院、永业科技、全一电子等多家台湾地区企业。

易迪拓培训推荐课程列表：<http://www.edatop.com/peixun/tuijian/>

射频工程师养成培训课程套装

该套装精选了射频专业基础培训课程、射频仿真设计培训课程和射频电路测量培训课程三个类别共 30 门视频培训课程和 3 本图书教材；旨在引领学员全面学习一个射频工程师需要熟悉、理解和掌握的专业知识和研发设计能力。通过套装的学习，能够让学员完全达到和胜任一个合格的射频工程师的要求…

课程网址：<http://www.edatop.com/peixun/rfe/110.html>

手机天线设计培训视频课程

该套课程全面讲授了当前手机天线相关设计技术，内容涵盖了早期的外置螺旋手机天线设计，最常用的几种手机内置天线类型——如 monopole 天线、PIFA 天线、Loop 天线和 FICA 天线的设计，以及当前高端智能手机中较常用的金属边框和全金属外壳手机天线的设计，通过该套课程的学习，可以帮助您快速、全面、系统地学习、了解和掌握各种类型的手机天线设计，以及天线及其匹配电路的设计和调试…

课程网址：<http://www.edatop.com/peixun/antenna/133.html>

WiFi 和蓝牙天线设计培训课程

该套课程是李明洋老师应邀给惠普 (HP) 公司工程师讲授的 3 天员工内训课程录像，课程内容是李明洋老师十多年工作经验积累和总结，主要讲解了 WiFi 天线设计、HFSS 天线设计软件的使用，匹配电路设计调试、矢量网络分析仪的使用操作、WiFi 射频电路和 PCB Layout 知识，以及 EMC 问题的分析解决思路等内容。对于正在从事射频设计和天线设计领域工作的您，绝对值得拥有和学习！…

课程网址：<http://www.edatop.com/peixun/antenna/134.html>

CST 学习培训课程套装

该培训套装由易迪拓培训联合微波 EDA 网共同推出, 是最全面、系统、专业的 CST 微波工作室培训课程套装, 所有课程都由经验丰富的专家授课, 视频教学, 可以帮助您从零开始, 全面系统地学习 CST 微波工作的各项功能及其在微波射频、天线设计等领域的设计应用。且购买该套装, 还可超值赠送 3 个月免费学习答疑…

课程网址: <http://www.edatop.com/peixun/cst/24.html>

HFSS 学习培训课程套装

该套课程套装包含了本站全部 HFSS 培训课程, 是迄今国内最全面、最专业的 HFSS 培训教程套装, 可以帮助您从零开始, 全面深入学习 HFSS 的各项功能和在多个方面的工程应用。购买套装, 更可超值赠送 3 个月免费学习答疑, 随时解答您学习过程中遇到的棘手问题, 让您的 HFSS 学习更加轻松顺畅…

课程网址: <http://www.edatop.com/peixun/hfss/11.html>

ADS 学习培训课程套装

该套装是迄今国内最全面、最权威的 ADS 培训教程, 共包含 10 门 ADS 学习培训课程。课程是由具有多年 ADS 使用经验的微波射频与通信系统设计领域资深专家讲解, 并多结合设计实例, 由浅入深、详细而又全面地讲解了 ADS 在微波射频电路设计、通信系统设计和电磁仿真设计方面的内容。能让您在最短的时间内学会使用 ADS, 迅速提升个人技术能力, 把 ADS 真正应用到实际研发工作中去, 成为 ADS 设计专家…

课程网址: <http://www.edatop.com/peixun/ads/13.html>

我们的课程优势:

- ※ 成立于 2004 年, 10 多年丰富的行业经验,
- ※ 一直致力并专注于微波射频和天线设计工程师的培养, 更了解该行业对人才的要求
- ※ 经验丰富的一线资深工程师讲授, 结合实际工程案例, 直观、实用、易学

联系我们:

- ※ 易迪拓培训官网: <http://www.edatop.com>
- ※ 微波 EDA 网: <http://www.mweda.com>
- ※ 官方淘宝店: <http://shop36920890.taobao.com>