SEMTECH

SRV05-4 RailClamp[®] Low Capacitance TVS Diode Array

PROTECTION PRODUCTS

Description

RailClamps are surge rated diode arrays designed to protect high speed data interfaces. The SR series has been specifically designed to protect sensitive components which are connected to data and transmission lines from overvoltage caused by electrostatic discharge (ESD), electrical fast transients (EFT), and lightning.

The unique design of the SR series devices incorporates eight surge rated, low capacitance steering diodes and a TVS diode in a single package. During transient conditions, the steering diodes direct the transient to either the positive side of the power supply line or to ground. The internal TVS diode prevents over-voltage on the power line, protecting any downstream components.

The SRV05-4 has a low typical capacitance of 3pF and operates with virtually no insertion loss to 1GHz. This makes the device ideal for protection of high-speed data lines such as USB 2.0, Firewire, DVI, and gigabit Ethernet interfaces.

The low capacitance array configuration allows the user to protect four high-speed data or transmission lines. The low inductance construction minimizes voltage overshoot during high current surges. They may be used to meet the ESD immunity requirements of IEC 61000-4-2, Level 4 (\pm 15kV air, \pm 8kV contact discharge).

Features

- ♦ ESD protection for high-speed data lines to IEC 61000-4-2 (ESD) ±15kV (air), ±8kV (contact) IEC 61000-4-4 (EFT) 40A (5/50ns) IEC 61000-4-5 (Lightning) 12A (8/20µs)
- ◆ Array of surge rated diodes with internal TVS Diode
- Small package saves board space
- Protects four I/O lines
- Low capacitance: 3pF typical
- Low clamping voltage
- ◆ Low operating voltage: 5.0V
- Solid-state silicon-avalanche technology

Mechanical Characteristics

- JEDEC SOT-23 6L package
- Molding compound flammability rating: UL 94V-0
- Marking : V05
- Packaging : Tape and Reel per EIA 481

Applications

- USB 2.0 Power and Data Line Protection
- Video Graphics Cards
- Monitors and Flat Panel Displays
- Digital Video Interface (DVI)
- 10/100/1000 Ethernet
- Notebook Computers
- SIM Ports
- ATM Interfaces
- IEEE 1394 Firewire Ports

Schematic and PIN Configuration

Circuit Diagram

Absolute Maximum Rating

Rating	Symbol	Value	Units
Peak Pulse Power (tp = 8/20µs)	P _{pk}	300	Watts
Peak Pulse Current (tp = 8/20µs)	۱ _{pp}	12	A
ESD per IEC 61000-4-2 (Air) ESD per IEC 61000-4-2 (Contact)	V_{esd}	15 8	kV
Lead Soldering Temperature	TL	260 (10 sec.)	°C
Operating Temperature	T,	-55 to +125	°C
Storage Temperature	T _{stg}	-55 to +150	°C

Electrical Characteristics

SRV05-4							
Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units	
Reverse Stand-Off Voltage	V _{RWM}	Pin 5 to 2			5	V	
Reverse Breakdown Voltage	V _{BR}	I _t = 1mA Pin 5 to 2	6			V	
Reverse Leakage Current	I _R	V _{RWM} = 5V, T=25°C Pin 5 to 2			5	μA	
Forward Voltage	V _F	I _r = 15mA			1.2	V	
Clamping Voltage	V _c	I _{pp} = 1A, tp = 8/20µs Any I/O pin to Ground			12.5	V	
Clamping Voltage	V _c	I _{pp} = 5A, tp = 8/20µs Any I/O pin to Ground			17.5	V	
Junction Capacitance	C _j	V _R = 0V, f = 1MHz Any I/O pin to Ground		3	5	pF	
		V _R = 0V, f = 1MHz Between I/O pins		1.5		pF	

SRV05-4

PROTECTION PRODUCTS

Typical Characteristics

110

100

90

80

70

60 50

40

30

20

10

0

0

Percent of I PP

Power Derating Curve

Forward Voltage vs. Forward Current

Capacitance vs. Reverse Voltage

6.00

Peak Pulse Current - IPP (A)

8.00

4.00

Pulse Waveform

© 2004 Semtech Corp.

Waveform Parameters:

tr = 8µs

td = 20µs

10.00

12.00

Applications Information

Insertion Loss S21

PROTECTION PRODUCTS Applications Information

Device Connection Options for Protection of Four High-Speed Data Lines

The SRV05-4 TVS is designed to protect four data lines from transient over-voltages by clamping them to a fixed reference. When the voltage on the protected line exceeds the reference voltage (plus diode V_F) the steering diodes are forward biased, conducting the transient current away from the sensitive circuitry. Data lines are connected at pins 1, 3, 4 and 6. The negative reference (REF1) is connected at pin 2. This pin should be connected directly to a ground plane on the board for best results. The path length is kept as short as possible to minimize parasitic inductance. The positive reference (REF2) is connected at pin 5. The options for connecting the positive reference are as follows:

- 1. To protect data lines and the power line, connect pin 5 directly to the positive supply rail (V_{cc}). In this configuration the data lines are referenced to the supply voltage. The internal TVS diode prevents over-voltage on the supply rail.
- 2. The SRV05-4 can be isolated from the power supply by adding a series resistor between pin 5 and V_{cc} . A value of $100k\Omega$ is recommended. The internal TVS and steering diodes remain biased, providing the advantage of lower capacitance.
- 3. In applications where no positive supply reference is available, or complete supply isolation is desired, the internal TVS may be used as the reference. In this case, pin 5 is not connected. The steering diodes will begin to conduct when the voltage on the protected line exceeds the working voltage of the TVS (plus one diode drop).

ESD Protection With RailClamps®

RailClamps are optimized for ESD protection using the rail-to-rail topology. Along with good board layout, these devices virtually eliminate the disadvantages of using discrete components to implement this topology. Consider the situation shown in Figure 1 where discrete diodes or diode arrays are configured for rail-torail protection on a high speed line. During positive duration ESD events, the top diode will be forward biased when the voltage on the protected line exceeds

Data Line and Power Supply Protection Using Vcc as reference

Data Line Protection with Bias and Power Supply Isolation Resistor

Data Line Protection Using Internal TVS Diode as Reference

Applications Information (continued)

the reference voltage plus the V_F drop of the diode. For negative events, the bottom diode will be biased when the voltage exceeds the V_F of the diode. At first approximation, the clamping voltage due to the characteristics of the protection diodes is given by:

$$V_c = V_{cc} + V_F$$
 (for positive duration pulses)
 $V_c = -V_F$ (for negative duration pulses)

However, for fast rise time transient events, the effects of parasitic inductance must also be considered as shown in Figure 2. Therefore, the actual clamping voltage seen by the protected circuit will be:

ESD current reaches a peak amplitude of 30A in 1ns for a level 4 ESD contact discharge per IEC 61000-4-2. Therefore, the voltage overshoot due to 1nH of series inductance is:

$$V = L_p di_{rest}/dt = 1X10^{-9} (30 / 1X10^{-9}) = 30V$$

Example:

Consider a V_{cc} = 5V, a typical V_{F} of 30V (at 30A) for the steering diode and a series trace inductance of 10nH. The clamping voltage seen by the protected IC for a positive 8kV (30A) ESD pulse will be:

V_c = 5V + 30V + (10nH X 30V/nH) = 335V

This does not take into account that the ESD current is directed into the supply rail, potentially damaging any components that are attached to that rail. Also note that it is not uncommon for the V_F of discrete diodes to exceed the damage threshold of the protected IC. This is due to the relatively small junction area of typical discrete components. It is also possible that the power dissipation capability of the discrete diode will be exceeded, thus destroying the device.

The RailClamp is designed to overcome the inherent disadvantages of using discrete signal diodes for ESD suppression. The RailClamp's integrated TVS diode

Figure 1 - "Rail-To-Rail" Protection Topology (First Approximation)

Figure 2 - The Effects of Parasitic Inductance When Using Discrete Components to Implement Rail-To-Rail Protection

Applications Information (continued)

helps to mitigate the effects of parasitic inductance in the power supply connection. During an ESD event, the current will be directed through the integrated TVS diode to ground. The maximum voltage seen by the protected IC due to this path will be the clamping voltage of the device.

Video Interface Protection

Video interfaces are susceptible to transient voltages resulting from electrostatic discharge (ESD) and "hot plugging" cables. If left unprotected, the video interface IC may be damaged or even destroyed. Protecting a high-speed video port presents some unique challenges. First, any added protection device must have extremely low capacitance and low leakage current so that the integrity of the video signal is not compromised. Second, the protection component must be able to absorb high voltage transients without damage or degradation. As a minimum, the device should be rated to handle ESD voltages per IEC 61000-4-2, level 4 (±15kV air, ±8kV contact). The clamping voltage of the device (when conducting high current ESD pulses) must be sufficiently low enough to protect the sensitive CMOS IC. If the clamping voltage is too high, the "protected" device may latch-up or be destroyed. Finally, the device must take up a relatively small amount of board space, particularly in portable applications such as notebooks and handhelds. The SRV05-4 is designed to meet or exceed all of the above criteria. A typical video interface protection circuit is shown in Figure 4. All exposed lines are protected including R, G, B, H-Sync, V-Sync , and the ID lines for plug and play monitors.

Universal Serial Bus ESD Protection

The SRV05-4 may also be used to protect the USB ports on monitors, computers, peripherals or portable systems. Each device will protect up to two USB ports (Figure 5). When the voltage on the data lines exceed the bus voltage (plus one diode drop), the internal rectifiers are forward biased conducting the transient current away from the protected controller chip. The TVS diode directs the surge to ground. The TVS diode also acts to suppress ESD strikes directly on the voltage bus. Thus, both power and data pins are protected with a single device.

Figure 4 - Video Interface Protection

Figure 5 - Dual USB Port Protection

Figure 6 - SIM Port

DVI Protection

The small geometry of a typical digital-visual interface (DVI) graphic chip will make it more susceptible to electrostatic discharges (ESD) and cable discharge events (CDE). Transient protection of a DVI port can be challenging. Digital-visual interfaces can often transmit and receive at a rate equal to or above 1Gbps. The high-speed data transmission requires the protection device to have low capacitance to maintain signal integrity and low clamping voltage to reduce stress on the protected IC. The SRV05-4 has a low typical insertion loss of <0.4dB at 1GHz (I/O to ground) to ensure signal integrity and can protect the DVI interface to the 8kV contact and 15kV air ESD per IEC 61000-4-2 and CDE.

Figure 7 shows how to design the SRV05-4 into the DVI circuit on a flat panel display and a PC graphic card. The SRV05-4 is configured to provide common mode and differential mode protection. The internal TVS of the SRV05-4 acts as a 5 volt reference. The power pin of the DVI circuit does not come out through the connector and is not subjected to external ESD pulse; therefore, pin 5 should be left unconnected. Connecting pin 5 to Vcc of the DVI circuit may result in damage to the chip from ESD current.

10/100 ETHERNET PROTECTION

Ethernet ICs are vulnerable to damage from electrostatic discharge (ESD). The internal protection in the PHY chip, if any, often is not enough due to the high energy of the discharges specified by IEC 61000-4-2. If the discharge is catastrophic, it will destroy the protected IC. If it is less severe, it will cause latent failures that are very difficult to find.

10/100 Ethernet operates at 125MHz clock over a twisted pair interface. In a typical system, the twistedpair interface for each port consists of two differential signal pairs: one for the transmitter and one for the receiver, with the transmitter input being the most sensitive to damage. The fatal discharge occurs differentially across the transmit or receive line pair and is capacitively coupled through the transformer to the Ethernet chip. Figure 8 shows how to design the SRV05-4 on the line side of a 10/100 ethernet port to provide differential mode protection. The common mode isolation of the transformer will provide common mode protection to the rating of the transformer isolation which is usually >1.5kV. If more common mode protection is needed, figure 9 shows how to design the SRV05-4 on the IC side of the 10/100

SRV05-4

10/100 ETHERNET PROTECTION CONT'

Ethernet circuit to provide differential and common mode protection. The SRV05-4 can not be grounded on the line side because the hi-pot test requires the line side not to be grounded.

GIGABIT ETHERNET PROTECTION

The clock rate of gigabit Ethernet is the same 125MHz as the 10/100 Ethernet. However, it uses a complex five level signaling and transmits at a faster data rate that makes it more susceptible to capacitance and insertion loss. The low capacitance and low insertion loss of the SRV05-4 allow it to sit on the gigabit Ethernet line without loss of signal integrity. Figure 10 shows how to connect the SRV05-4 into a gigabit ethernet on the IC side for common and differential mode protection. Notice that pin 5 of the SRV05-4 is not connected. Some may be tempted to connect it to Vcc. In the ethernet application, the Vcc lines does

not come out through the connector and does not need to be protected. Figure 10 shows the LC03-3.3 on the line side for the secondary line protection to Bellcore 1089 intrabuilding. If the designer only needs to meet ESD, CDE and low level lightning, the LC03-3.3 can be omitted.

Outline Drawing

Land Pattern

SRV05-4

Marking Codes

Part Number	Marking Code	
SRV05-4	V05	

Ordering Information

Part Number	Lead Finish	Qty per Reel	Reel Size
SRV05-4.TC	SnPb	3,000	7 Inch
SRV05-4.TCT	Pb free	3,000	7 Inch

Contact Information

Semtech Corporation Protection Products Division 200 Flynn Road, Camarillo, CA 93012 Phone: (805)498-2111 FAX (805)498-3804 SRV05-4

射频和天线设计培训课程推荐

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立,致力并专注于微 波、射频、天线设计研发人才的培养;我们于 2006 年整合合并微波 EDA 网(www.mweda.com),现 已发展成为国内最大的微波射频和天线设计人才培养基地,成功推出多套微波射频以及天线设计经典 培训课程和 ADS、HFSS 等专业软件使用培训课程,广受客户好评;并先后与人民邮电出版社、电子 工业出版社合作出版了多本专业图书,帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、 研通高频、埃威航电、国人通信等多家国内知名公司,以及台湾工业技术研究院、永业科技、全一电 子等多家台湾地区企业。

易迪拓培训推荐课程列表: http://www.edatop.com/peixun/tuijian/

射频工程师养成培训课程套装

该套装精选了射频专业基础培训课程、射频仿真设计培训课程和射频电 路测量培训课程三个类别共 30 门视频培训课程和 3 本图书教材; 旨在 引领学员全面学习一个射频工程师需要熟悉、理解和掌握的专业知识和 研发设计能力。通过套装的学习,能够让学员完全达到和胜任一个合格 的射频工程师的要求…

课程网址: http://www.edatop.com/peixun/rfe/110.html

手机天线设计培训视频课程

该套课程全面讲授了当前手机天线相关设计技术,内容涵盖了早期的 外置螺旋手机天线设计,最常用的几种手机内置天线类型——如 monopole 天线、PIFA 天线、Loop 天线和 FICA 天线的设计,以及当前 高端智能手机中较常用的金属边框和全金属外壳手机天线的设计;通 过该套课程的学习,可以帮助您快速、全面、系统地学习、了解和掌 握各种类型的手机天线设计,以及天线及其匹配电路的设计和调试...

课程网址: http://www.edatop.com/peixun/antenna/133.html

WiFi 和蓝牙天线设计培训课程

该套课程是李明洋老师应邀给惠普 (HP)公司工程师讲授的 3 天员工内 训课程录像,课程内容是李明洋老师十多年工作经验积累和总结,主要 讲解了 WiFi 天线设计、HFSS 天线设计软件的使用,匹配电路设计调 试、矢量网络分析仪的使用操作、WiFi 射频电路和 PCB Layout 知识, 以及 EMC 问题的分析解决思路等内容。对于正在从事射频设计和天线 设计领域工作的您,绝对值得拥有和学习! …

课程网址: http://www.edatop.com/peixun/antenna/134.html

CST 学习培训课程套装

该培训套装由易迪拓培训联合微波 EDA 网共同推出,是最全面、系统、 专业的 CST 微波工作室培训课程套装,所有课程都由经验丰富的专家授 课,视频教学,可以帮助您从零开始,全面系统地学习 CST 微波工作的 各项功能及其在微波射频、天线设计等领域的设计应用。且购买该套装, 还可超值赠送 3 个月免费学习答疑…

课程网址: http://www.edatop.com/peixun/cst/24.html

HFSS 学习培训课程套装

该套课程套装包含了本站全部 HFSS 培训课程,是迄今国内最全面、最 专业的 HFSS 培训教程套装,可以帮助您从零开始,全面深入学习 HFSS 的各项功能和在多个方面的工程应用。购买套装,更可超值赠送 3 个月 免费学习答疑,随时解答您学习过程中遇到的棘手问题,让您的 HFSS 学习更加轻松顺畅…

课程网址: http://www.edatop.com/peixun/hfss/11.html

ADS 学习培训课程套装

该套装是迄今国内最全面、最权威的 ADS 培训教程,共包含 10 门 ADS 学习培训课程。课程是由具有多年 ADS 使用经验的微波射频与通信系统 设计领域资深专家讲解,并多结合设计实例,由浅入深、详细而又全面 地讲解了 ADS 在微波射频电路设计、通信系统设计和电磁仿真设计方面 的内容。能让您在最短的时间内学会使用 ADS,迅速提升个人技术能力, 把 ADS 真正应用到实际研发工作中去,成为 ADS 设计专家...

课程网址: http://www.edatop.com/peixun/ads/13.html

我们的课程优势:

- ※ 成立于 2004 年, 10 多年丰富的行业经验,
- ※ 一直致力并专注于微波射频和天线设计工程师的培养,更了解该行业对人才的要求
- ※ 经验丰富的一线资深工程师讲授,结合实际工程案例,直观、实用、易学

联系我们:

- ※ 易迪拓培训官网: http://www.edatop.com
- ※ 微波 EDA 网: http://www.mweda.com
- ※ 官方淘宝店: http://shop36920890.taobao.com

专注于微波、射频、天线设计人才的培养 官方网址: http://www.edatop.com 淘宝网店: http://shop36920890.taobao.com