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Abstract

The physical limitations of omnidirectional antennas are considered.
With the use of the spherical vave functions to describe the field, the
directivity gain G and the Q of an unspecified antenna are calculated under
jdealized conditions. To obtain the optimum performance, three criteria are
used: (1) maximum gain for a given complexity of the antemna structure,
(2) minimum Q, (2) maximum ratio of G/Q. It is found that an antemnna of
which the maximum dimension is 2a has the potentiality of a broed bandwidth
provided that the gain is equal to or less than 4a/A. To obtain a gein
higher than this value, the Q of the antenna jnereases at an astronomical
rate. The antenna which has potentially the broadest bandwidth of 21l
omnidirectional antennas is one vhich has a radiation pattern corresponéing
to that of an infinitesimally small dipole,






PHYSICAL LIMITATIONS OF OMNIDIRECTIONAL ANTENNAS

1. Introduction

An antenna system, functioning as a transmitter, provides a practical means
of transmitting, to a distant point or points in space, a signal which appears in
the form of r-f energy at the input terminals of the transmitter. The performance
of such an antenna system is judged by the quality of transmission, which is
measured by both the efficiency of transmission and the signal distortion. At a
single frequency, transmission efficiency is determined by the power gain of the
antenna system in a desired direction or directions, The distortion depends not
only on the frequency characteristics of the antenna input impedance, but also on
variations of phase and of power gein with frequency. It is common practice to
describe the performance of an antenna system in terms of its power gain and the
bandwidth of its input impedance.

Designers of antennas at VLF range have always been faced with the problems
of excessive conduction losses in the antenna structure and a narrow bandwidth. At
this frequency range, the physicel size of the antenna is necessarily small in terms
of the operating wavelength. For a broadcasting antenna, with a specified distribu-
tion of radiated power in space, it was found that the antenna towers must be spaced
at a sufficient distance apart so as not to have excessive currents on the towers.
At nmicrowave frequencies, where a2 high gain has been made possible with a physically
small antenna, there seems to be a close relationship between the maximum gain thus
far obtalnable and the size of the antenna expressed in terms of the operating wave-
length, At optical frequencies where a different langusge is used, the resolving
power of a lens or a reflector is proportional to the ratio of the linear dimension
to wavelength. Thus, over the entire frequency range, there seems to be a practical
limit to the gain or the directivity of a radiating or focussing system,

From time to time, there arises the question of achieving a higher gain
from &n antenna of given size than has been obtained conventionally. Among published
articles, Schelkunoffl has derived a mathematical expression for the current distribution
along an array which yields higher directivity gein than that which has been
usually obtained. It is mentioned at the end of this article that an array carry-
ing this current distribution would have a narrow bandwidth as well as high con-
duction loss. In 1943, laPaz and Millerz obtained an optimum current distribution
on a vertical antenna of given length which gives the maximum possible field
strength on the horizon for a given power output. The result was disputed in a
later paper by Bouwkamp and deBrui,jn8 who developed a method of realizing an

1. S. A. Schelkunoff, B.S.T.J. V. 22, pp. 80-107, Jan. 1943,

2. L. IaPaz and G. A. Miller, Proc. I.,R.E. V.31, pp. 214-232, May, 1943.

3. €. J. Bouwkamp and N. G, deBruijn , Philips Research Reports V., 1, pp. 135-158,
Jan, 1846,
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arbitrarily sharp vertical radiation pattern by a sultable choice of the current
distribution. In & later report by laemmel of the Polytechnic Institute of
Brooklyn, a method was presented for finding a source distribution function which
results in an arbitrarily large gain relative to an isotropic radiator and which at
the same time is contained within an arbitrarily small region of space.

In all the above articles, the authors invariably have computed the source
distribution required to obtain a directivity gain higher than that obtained in
practice with an antenna of a given size., As a result, it can be said that there
is no mathematical limit to the directivity gain of an antenna of given size., The
possibility of arranging on paper the current distribution on an antenra at r-f
frequencies exists because of the absence of the severe restriction which must be
observed, on account of the incoherent nature of the energy, in designing a system
at optical frequencies,

In 1941, Stratton demonstrated the impracticality of supergain antennas,

In his unpublished notes he derived the source distribution within a sphere of finite
radius for any prescribed distribution of the radiation field in terms of a complete
set of orthogonal, spherical, vector wave functions4. Mathematically, the series
representing the source distribution diverges as the directivity gain of the system
increases indefinitely. Physically, high current amplitude on the antenna, if it

can be realized, implies high energy storage in the system, a large power dissipation,
and a low transmission efficiency.

This paper presents an attempt to determine the optimum performance of an
antenns in free space and the corresponding relation between its gain and the band-
width of the input impedance under various criteria. Let the largest linear dimension
of the antenna structure be 2a, such that the complete antenna structure including
transmission lines and the oscillator can be enclosed inside a geometricel spherical
surface of radius a. The field outside the sphere due to an arbitrary current or
source distribution inside the sphere can be expressed in terms of a complete set
of spherical vector waves4. Each of these waves represents a spherical wave prop=-
agating radially outward. However, the current or source distribution inside
the sphere 1s not uniquely determined by the field distribution gutside the sphere.
It is mathematically possible to create a given field distribution outside the
sphere with an infinite number of different source distributions. We shall confine
our interest to the most favorable source distribution and the corresponding antenna
structure. To circumvent the difficult task of determining the latter, the most
favorable conditions will be assumed to exist inside the sphere. The current or
source distribution inside the sphere necessary to produce the desired field
distribution outside will be assumed to require the minimum amount of energy stored
inside the sphere so that one has a pure resistive input impedance at a single
frequency. Also, to simplify the problem, the conduction loss will be neglected.

Under these conditions it is not possible to calculate the behavior of this

4., J. A. Stratton, "Electromagnetic Theory, Ch. 7, p. 392, McGraw-Hill, 1941,
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antenna over a finite frecuency range since the exact nature of the antenns structure
is not known. At one frequency we can determine the radiation characteristics of

the system from the expressions for the field, incluling the directivity gain of

the antenna in a given direction. The directivity gein is equal to the power gain
in the absence of conduction loss in the antenna structure. We shall utilize the
conventional concept of Q, computed from the energy and power at a single frequency,
to obtain the freauency characteristics of the input impedance by extrapolation.

It is understood that the physical interpretation of Q as so computed becomes rather
vague whenever the value of Q is low,

After obtaining the gnin and Q of the antenna corresponding to an arbitrary
field distribution outside the sphere, we then proceed to determine the optimum
distribution of the field outside the sphere under different criteria and the
corresponding gains and Q through the process of maximization and minimlzation.

Antennas can be classified according to their radiation characteristics as
follows: (1) omni-directionsl antennas, (2) pencil-beam antennas, (3) fanned-beam
entennas, and (4) shoped-beam antennas, The first type of antenra will be discussed
in detail in this article. The physical limitations of pencil-beam antennas will
be dealt with in an article to be published later.

The problem has been worked out independently by Ramo and Taylor of Hughes
Aircraft with a slightly different procedure. Their results are essentially in
agreement with what follows,

2. Analysis

2,1 Field of a Vertically Polarized Omnidirectionsl Antenna. The type of zntenna
under consideration here gives rise to an omnidirectional pattern. It is commonly

used as a beacon or broadcasting antenna, The radiated power is distributed uniformly
around a vertical axis, which we take as the axis of =2 spherical coordinate system
(3.9.¢). We shall discuss first the case where the electric field lies in planes
passing through the axis of symmetry. The antenna is schematiczlly shown in

Fig. 1 and lies totally within a spherical surface of radius a., For an arbitrary
current distribution and antenna structure, the field outside the sphere can be
expressed in terms of a complete set of orthogonal, spherical waves, propagating
radially outward. ZFor the type of antenna under consideration only TMno waves are
required to describe the circularly symmetrical field with the specified polarization.
By ignoring all the other spherical waves we have the expressions of the three non-

vanishing field components:

1
%An P (cos 6) b (kR)

o]
.
|

By = -J % % An a{n + 1) Pn(cos 8) —Egéggz——— (1)
1
Bg = J/k A P!];(cos 8) ®x g‘n (R h (kR)]
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ANTENNA
\ | STRUGTURE
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Figure 1. Schemztic diagram of a vertically polarized
omnidirectional antenna,

where

P (cos ©) is the Legendre polynomial of order n,
P (cos 8) is the first associzted Legendre polynomial,

(kR) is the spherical Hankel function of the second kind.

k = w/eg = 2n/A

u/e is the wave impedance of a plane wave in free space and

1/];;"13 the velocity of a plane wave in free space.
The time factor od%t i omitted throughout the paper and the rationalized MKS unit system
is used. The coefficients A s are, in general, complex qusntities. In synthesis
problems, the A 's are specified by the desired radiation chzracteristics, When the
antenna structure is given, the An's are determined from the boundafy conditions on
the surfaces of the antenna structure, For the time being, the An s are a set of
unspecified coefficients,
2,2 Radiation Characteristigcs. At a sufficiently large distance from the sphere,
the transverse field components become asymptotically

-JkR ntl

T 2 1 .
Eg ey %An (-1) P (cos 9)

= [=
H¢j:me .

The angular distribution of the radiation fleld is given by the series of the

()

associated Legendre polynomials, This series behaves somewhat like a Fourier series
in the interval from ©@ = O to © = m. Using the conventional definition for
e




the directivity gain, we have

2 ‘ZA ( 1)22—1' Pl(cos O)|2
(o) = 4n | Bg) - oo n . (3)
f"f2n|Edgsin o 4o df z|a] 2 "Zn%ﬂl
& o

The denominator is obtained from the orthogonality of the associated
Legendre polynomials:

2n(n+l)

nr 1 2
5f [Pn(cos O)] sin © de BrYS]

and
m
6[ Pi(cos 9) P:;, (cos 8) sin 646 = O forn # n',

We shall 1imit our attention to the gain in the equatorial plene 6 = m/2, In this
plane,

PIJ;(O) = 0 for n even, and

1 2zt |

Pr(0) = (-1) “Tl"'ﬁ"li‘i“—é‘- for n odd .
: FE

Thus the terms of even n do not contribute to the radiation field along the equator,
In order to have a high directivity gain in the equatorial plane it is necessary to
have

A = 0 for n even

n
\

while all the rest of the A.n's must have the same phase angle. From here on, we
shall consider all An's to be positive resl quantities for odd n and zero for
even n, Thus the directivity gain on the equatorial plane becomes

+] 2
T'a (-1)22- PHo
G(T_zr__) = [ n n J (4)

n 2n+l

1
where L  represents the sum over odd n only.

2,3 Power and Bnergy Outside the Sphe With the field of the omnidirectional
antenna outslde the sphere given by Eqs. (1), the total complex power computed at

the surface of the sphere is the integral of the complex Poynting vector over the
same sphere:

2
P = s [ Tha) g phcen,) (6)

5=



where

/0 ka
h = hn(/o)
(/o ho )t a%fhn(,o) .

The average power radiated is the real part of (5):
2
- f&_ ! n(n+l)
Pav on € z{t_p} n+ . (6)

It is possible to calculate the total electric energy and the magnetic
energy stored outside the sphere., On the c=w basis the total stored energy is
infinitely large provided any one of the An's is finite, since the radiation field
which is inversely proportional to the radial distance extends to infinity. As in
the case of an infinite transmission line with no dissipation, most of the energy
appears in the form of & traveling wave which propasgates toward infinity and
never returns to the source. The total energy calculated on this basis has no
direct bearing upon the performance of the antenna, It is difficult to separate
the energy associated with the local field in the neighborhood of the antenna from
the remainder. The energy is not linear in the field components and hence the law
of linear superposition cannot be applied directly to it., The imaginary part of the
integral of the complex Poynting vector is proportional only to the difference of
the electrical and magnetic energy stored outside the sphere, In order to separate
the energy associated with radiation from that associated with the local field, we
shall reduce the field problem to & circuit problem where the radiation loss is
replaced by an equivalent conduction loss.

2:4 EBquivalent Circuits for Spherical Waves, Because of the orthogonal properties
of the spherical wave functions employed, the total energy, electric or magnetic,
stored outside the sphere is equal to the sum of the corresponding energies
associated with each spherical wave, and the complex power transmitted across a
closed spherical surface 1s equal to the sum of the complex powers associated with
each spherical wave., Insofar as the totsl energies and power are concerned, there
is no coupling between any two of the sphericel waves outside the sphere. Conse-
quently, we can replace the space cutside the sphere by a number of independent
equivalent circuits, each with a pair of terminals connected to a box vhich represents
the inside of the sphere. From this box, we can pull out a pair of terminals repre-
senting the input to the antenna as shown in Fig. 2. The total number of pairs of
terminals is equal to the number of spherical waves used in describing the field
outside the sphere, plus one. We have now managed to transform a space problem

to the problem of its equivalent circuit,

When the field outside the sphere has been specified by Eg.(l), the current,

voltage, and impedance of the equivalent circuit for each spherical wave aré uniquely
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INPUT

Figure 2. Bquivalent circuit of a vertically polarized
omnidirectional antenna.

determined except for an arbitrary real transformer ratio by equating the complex
power associated with the spherical waves to that of the circuits. We shall define

the voltage, current, and impedance of the equivalent circuit for the TMn wave as:?

A 4mmn (n+1) J(ph "

k 2n+l

,4ﬂgfn+12 /o hn
2n+l

v =
n

(7}

]
]
!* >
olE nl?l
|-

and

Z
n

J(/ohn)' Ioh

The voltage is proportional to the © component of electric field and the

current is proportional to the magnetic field Hy of the TMn wave on the surface of
the sphere. The normalized lmpedance Zn is equal to the normalized radial wave
impedance on the surface. It can be shown that not only is the complex power which
is fed into the equivalent circuit equal to the complex power associated with the
TM wave but the instantaneous powers are also equzl to each other. The impedance
Z of the equivalent circuit is a physically realizable impedance and Eq. (7) is

valid at all frequencies,
Using the recurrence formulas of the spherical Bessel functions, one can

write the impedance Zn as a continued fraction:

7=




n JP 2n-1 1
Jp * 2n-3
3P
' 1 . (8)

I
J
This can be interpreted as a cascade of series capacitances and shunt inductances
terminated with a unit resistance. For n = 1, the impedance consists of the three
elements shown in Fig, 3. This is the equivalent circuit representing a wave which
could be generated by an infinitesimally small dipole. At low frequencies, most of

the voltage applied to the terminal appears across the capacitance, and the unit

resistance is practically short-circuited by the inductance, At high frequencies,
a = RADIUS OF SPHERE
¢ =VELOCGITY OF LIGHT

C=¢

I

I -i: i\
2 Lg !

Figure 3. Bquivalent circuit of electric dipole.
the impedance Z1 is practically a pure resistance of amplitude unity. At inter-
mediate frequencies, the reactance of Z1 remzins capacitive. The equivalent

circuit of Zn is schematically shown in Fig, 4. The circuit, far all values of n,

a a

In 4>"{\ ! AN — -
Zp . a a
e L= (2n-1)C (2n-5)c '

Figure 4. ZEBqulvalent circuit of TMn spherical wave.

acts as a high~-pass filter., With the dissipative element hidden at the very end
of the cascade, the difficulty of feeding average power into the dissipative
element at a single frequency incresses with the order of the wave. The dissipation
in the resistance is equal to the radiation loss in the space probleam. The

8=




capacitances and inductanices are proportional to the ratio of the radius of the sphere to
the velocity of light. The increase of the radius of the sphere has the same effect on
the behavier of the equivalent circuit as the increase of frequency.

Except for the equivalent circuit of the electric dipole, it would be tedious
to calculate the total electric energy stored in all the capacitances of the equi-
valent circuit for Zn. We shall therefore approximate the equivalent circuit for Zn
by a simple series RLC circuit which has essentially the same frequency behavior in
the neighborhood of the operating frequency. We compute Rn, Ln' and Cn of the simplified
equivalent circult by equating the resistance, reactance, and the frequency derivative
of the reactance of Zn to those of the series RLC circuit. The series resistance Rn is

of course equal to the real part of Zn ot the operating frequency. The results are the

following?
-2
R = lf,h!l
2 dxn xn]-l
¢ = 2 [d—w w (9)
L = & [&a o f.r.l.]
n 2 aw o
where ’

% = [phalpsat *+ pratpn] lpnl”

and Jn and n are the spherical Bessel functions of the first and second kind. Ex-
cept for the frequency variation of the resistance Rn in the original equivalent
circuit, the simplified circuit is accurate enough to describe Zn in the immediate
neighborhood of the operating frequency.

Based upon this simplified equivalent circuit, the average power dissipation

in 2 1is
n
' + A 2
p o= (b Zmil) (=) (20)
n € 2n+l k
and the average electric energy stored in Znis
2 2 rdx X
v <[P (1) (An) | ph [ _n__..._n] (11)
— -2 n
n ¢ 2(2n¥l) k dw w

vhich 1s larger than the average magnetic energy stored in Zn. We shall define Qh
for the TMn wave as

2w W _ 1 {pn 2roa&x _ g
L S L R

The bandwidth of the equivalent circuit of the Tanave is equal to the reciprocal
of Qh’ when it is matched externally with a proper amount of stored magngtic energy.
When Qn is low, the above interpretation is not precise, but it does indicate
qualitatively the freauency sensitivity of the circuit,
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In Fig. 5, Q’n of the TMn waves is plotted against 2naf/A. We observe that Q11
is of the order of unity or less whenever the abscissa ena/k is greater than the order
n of the wave. Here the stored electric energy in the equivalent circuit of the
wave is insignificant and the circuit behaves essentially as a pure resistance.

When 2118./)\ is less than n, the circuit behaves essentially as a pure capacitance.
Q‘n increases at an sstronomical rate as the abscissa decreases. In terms of wave
propagation, the 'I‘anave will propagate from the surface of the sphere without an
excessive amount of energy stored in the nelghborhood of the sphere only when the

1

radius of the sphere is greater than nA/2m,

10°

Qn

NN

0 5 10 15 20 25
2ma/A—>

=

Figure 5. Q,n of the equivalent circuit of TMn or TEn wave.

245 Equivalent Circuit of the Antenna. The complete equivalent circuit of the antenna
system is shown in Fig. 2. The circular box is a coupling network representing the
space inside the geometrical sphere shown in Fig, 1. It couples the system feeding
the input terminals to the various equivalent circuits of the TM waves connected
externally to the box. The voltage V_ and current I are those given by Eq. (7).

-10-
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In Sec. 2.2 on radiation characteristics, it was pointed out that for each
term to contribute positively to the gain of the antenna in the equatorial plane,
it is necessary for all An's to have the same phase angle., The spherical Hankel
function hn(F) is essentislly a positive imaginary quantity when its argument is
less than the order n, Thus, the currents of the eguivalent circuits Zn for n
greater than the argument, are essentially in phase, and the instantaneous electric
energies stored in all the equivalent circuits oscillate in phase.

We have calculated the power dissipation as well as the average energy
stored in Zn for the simplified circuit of the TMn wave. The total electric energy
stored and the power dissipated in all the circuits connected to the coupling net-
work is equal to the sunmation of W and P , respectively. The total power dis-
=ipated.Z,P is, of course, equal to the total power radizted into space, while the
total electric energy stored.z W is that associated with the local field outside
of the sphere,

Theoretically, there is no unique antenna structure or source distribution
inside the sphere which generates the field distribution given by Eq. (1). Con- .
sequently, the coupling network representing the space inside the sphere is not
unique. The process of determining the optimum antenna structure for a given field
distribution outside or the optimum coupling network is by no means a simple matter.
To simplify the problem and to give the best antenna structure the benefit of doubt,
the following most favorable conditions for energy storage and power dissipation
inside the sphere will be assumed:

1. There will be no dissipation in the antemna structure in the form of

conduction loss.

2. There will be no electrical energy stored except in the form of a

traveling wave.

3. The magnetic energy stored will be such that the total average

electric energy stored beyond the input terminals of the antenna
is equal to the average magnetic energy stored beyond the terminals
at the operating frequency.
By Poynting's theorem it can be shown that the input impedance of the antenna is
a pure resistance at the operating frequency under these conditioms,
With this particular antenna structure, and its corresponding eguivalent

circuit, we can proceed to define a quantity Q at the input terminals:

Q= times the mean electric ener tored beyond the input term
power dissipated in radiation

If this Q is high, it can be interpreted as the reciproczl of the fractional
frequency bandwidth of the antenna., If it is low, the input impedance of the antemna
varies slowly with frequency and the antenna has potentially a broad bandwidth. The
ratio Q can therefore be used in the latter case as a crude indication for a broad-
band.

Upon summing up the mean electric energy stored in all the simplified equi-~

valent circults representing the spherical waves outside the sphere, and the total
~11-




power radiated, the Q of the idealized antenna is

zc Anz nz(1n+1) Q’n ( /)) (15)
S:k 2 n(n+d
n n+

vhere Q 1is given by Eq. (12).

We have defined and calculated two fundamental quantities G and Q for this
somewhat idealized antenna. We have imposed a number of conditions on the coefficients
An as well as on the energy and power inside the sphere., Otherwise, the set of
coefficients An is yet unspecified. Additional conditions must be imposed on G and
Q to determine the ultimate limits of antenna performsnce under various criteria,
2,6 Oriterion I: Maximum Gain, Whenever the antenna structure must be confined
within a small volume, and high gain is required, the logical criterion would be to
demand maximum gain with an antenna structure of given complexity. The series of
Legendre polynomials representing the field distribution behaves angularly in the
same fashion as a Fourier series. The complexity of the source distribution re-
quired to generate the n-th term increases with the order n. To specify the number
of terms in Eq. (1) to be used is therefore equivalent to specifying the complexity
of the antenna structure. We shall therefore exclude all the terms for nd> N, where
N is an odd integer, and proceed to calculate the maximum gain as a function of N,

Differentiating the gain in the equatorisl plane, [Eq. (4)], with respect
to the coefficient An and setting the derivative to zero, we have

n+l
Sy= 1,2 n(n+l)
by = (07 B #(0) Z.n L) :
ZAn(-l) P (0)

There are as many equations of this form as the number of terms in the series. We

can therefore solve for An in terms of the first coefficient Alz

n-1
= P ) pt
Ay = (D) gnﬁﬁ:i) F(0) &y e (24)

The corresponding gain and Q of the antenna are

¢3) = zj_"an (15)
N. N'
Q = % a, /% a, (16)
where a_ = ﬁ%ﬁ_“_l‘l—)[?i(o)]a. (17)
Except for the first few terms,
a = 4fn., (18)

n
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The formula (15) for the maximum gein was previously obtained by W. W. Hansen®,

TABLE 1
The Maximum Gain Versus N
bt 1 3 5 g N
Gain 1.5 3.81 4,10 2N/m

The value of the maximum gzin for different values of N is given in Table I.
For N = 1, the gain is that of an electric dipole. For large values of N, the gailn
1s proportional to N. Under the present criterion, the gezin is independent of the
size of the antenna. It indicates that an arbitrarily high gain can be obtained
with an arbitrarily small antenna, provided the source distribution can be physically
arranged.

Figure 6 shows the Q of an antenna designed to obtain the maximum gain with
a given number of terms, as a function of 2ma/A. While the terms in the denominator

g (v
UL
il \\ W
AR

Figure 6, Q of omnidirectionsl sntenna. Criterion: Mex. gain with fixed number of terms.

5, W. W, Hansen, "Notes on Microwaves", M. I, T. Rad. Iab. Revort T-2.
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of Eg. (16) have approximately equal amplitudes, the numerator is an ascending
series of (N+1)/2 terms. For any given value of 2ma /A, Qn increases with n at a
rapid rate as shown in Fig. 5. The numerator is essentially determined by the
last few terms of the ascending series. For 2ma/A greater than N, Q is of the
order of unity or less, indicating the potentiality of a broad-band system. For
2ma/A less then N, the value of Q rises astronomically as 2ma/A decreases. The
transition occurs for

2ra/h % N (19)

corresponding to a gain
v 2 2m _ 4a 20
G = T [} k - A b4 ( )

The gain of an omnidirectional antenna as given by Eq. (20) will be called the normal
gain, It is equal to the gain obtained from a current distribution of uniform amplitude
and phase along a line of length 2a. In Fig. 7, curve I shows the Q of an antenna of

normal eain. To increase the goin by a factor of two, we have to use twice as many

10
10°
10*
o
Q
é?Bu/X
10°
102
10
G¥4a/\
ié
, |
0 5 10
2ma/\

Figure 7, Q for omnidirectional antenna.
Criterion: Max. G with fixed number of terms.
I normal gain.
II twice the normal gain.
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terms, and pay dearly in Q as shown by Curve II. The slope of Curve II indicates
the increasing difficulty of obtaining additional gain as the normal grin increases.

Under the present criterion, no special conditions have been imposed on Q.
It can be shown that the Q obtained here is by no means the minimum for a given
gain and antenna size. Since the gain is maximized [Bq. (15)] with respect to A,
e small variation of AN will not affect the gain. Instead, the Q will vary rapidly
as indiczted by Bq. (13) when N> 2ma/A.
2,6 Criterion II: Minimum Q, In this section, we shall proceed to find 2 com~
bination of An'é to give the minimum Q with no separate conditions imposed on the
gain of the antenna. Differentiating Q with respect to An, we have the following
equation:

' a2 all) ' Zalml) o .

n  2n+l n 2n+l n

For any given value of 2ma/A, all the Qh's have different values. Hence, the above
equation can be satisfied when there is only one term under the summation sign. The
corresponding Q of the antenna is equal to the Qn of the term used. Since Ql has
the lowest amplitude, we conclude that the antenna which generates a field outside
the sphere corresponding to that of an infinitesimally small dipole has potentially
the broadest bandwidth of a2ll antennas. The gain of this antenna is 1.5.

2,7 Criterion III: Maximum G/Q. As a compromise between the two criteria Jjust

mentioned, we shall now maximize the ratio of the gein to Q. The process can be

interpreted as the condition for the minimum Q to achieve a certain gain or as the
condition for the maximum gain at a given Q. The problem is that of finding the
vroper combination of An's for maximum G/Q. From Eqs. (4) and (13), we have

) [zkn<-1>%l“ O

% L . (21)
A< n{n+l)
z n 2n+l Qn
With the same method used before, we obtain
-1
A = (..1)%— 2(en+l) PL(o) S'lAl . (22)
n 3n(n+l n Qn

The corresponding values o{ G, Q,and the ratio G/Q are

]

—
- M‘

o

(=]

S~

{—

[4V]

G (23)
Ze,/,

Q = z.an/Q:__ (24)
z'an/Q
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¢fe =Za fe (25)
where a  1s given in Eaq. (17). The gain and G/Q are plotted agsinst 2ma/A with N as
a parameter in Figs. 8 and 9, respectively. In using the above formulas, Qn is
arbitrarily considered to be unity whenever its actual value is equal to or less than
unity. The for all the points on the curve is about unity. Since the two series
involved in Fgs. (23) and (24) converge rapidly as N is increased indefinitely, the
gain approaches asymptotically the approximate value of 4a /N which is the normal gain
derived under criterion I. There is a definite limit to the gain if the Q of the
antenna is required to be low, It is this physicel limitation, among others, which

limits the gain of 2ll the practical antennas to the aporoximate value 4a/R.
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Figure 8., Gain of omnidirectionsl antenna. Criterion: Max. G/Q. When Qn<.l, it is
considered to be unity.

248 Horizontally Polarized Omnidirectionsnl Antenna, By interchanging E and H in
EBq. (1), and replacing V e/u by -,/u?e, we have the field outside the geometric sphere,
for a horizontally polarized omnidirectionzl antenna, expressed as a susmmation of

circularly symmetrical TEn waves?
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B4 =E £'s, P (cos 6) h_(R)

E = Z’Bn n(a+l) P (cos ) h;;%R) (26)
)

Hy = = z B Pi(cos e) iR %R (R hn(kR)]

where the Bn's are arbitrary constants. As before, each TEn wave at the surface of
the sphere can be replaced by a two-terminal equivalent circuit defined on the
same basis as that of the corresponding TMn wave. The voltage, current,and ad-

mittance at the input of the circuit are the following:

v=4&f.r; 4mn+l) ,n (27)
n ¢ k 1l [ n

B
[ = 4ft B [mea) J(ph) (28)
n € k 2n+l
16 NeD
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/’/’1%
12 o
/ N=17
y
//” N=15
10 y
N ,//}7 N=i3
Q |
8 A N=lI
pd N=9
® /
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Figure 9. G/Q of omnidirectional antenna. Criterion: Max. G/Q. When Qn< 1,it is
considered to be unity.
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Y, = pn)t/pn (29)

n

The admittance is equal to the normalized wave admittance of the TEn wave on the
surface of the sphere, and is also equal to the impedance Zn of the eguivalent cir-
cuit for the TMn wave, This circault is a cascade of shunt inductances and series
capacitances terminated with a unit conductance as shown in Pig. 10. At low
C= a a
(2n-1)¢  (2n-5)c

Figure 10, ZEquivalent circuit of TEn spherical wave,

freouencies, the admittance is practically that of the first inductance. The
admittance remains inductive at all frequencies and approaches a pure conductance of
unit amplitude as the frequency increases,

The analysis of the horizontally polarized omnidirectional antenna follows
exactly that of the vertically polarized one. The formulas for G, Pn' Wn, Qn,and Q
remain unchanged if we replace all the An's by Bn's. The quantity Wn is now to be
interpreted as the mean magnetic energy stored in the simplified equivalent cir-
cuit of the TE wave (a parallel RLC circuit). Results obtained previously apply
to the present problem without further modification,
2,9 Circularly Polarized Omnidirectional Antenna., The field of an elliptically
polarized omnidirectional antenna can be expressed as a sum of TH_ waves [Bq. (1)]

and TB waves [(Eq. (26)]. To obtain circular volarization everywhere, we must have

B = *+ 3A . (20)

Under this condition, the gain of the circularly polarized antenna is again given
by Eq. (3).

The equivalent circuit of the circularly polarized omnidirectional antenna
consists of 2N+1 pairs of terminals where N is the highest order of the spherical
waves used., If we are only interested in the gain along the equator, the even terms
of the series can be excluded. The number of pairs are reduced to N+2 including the
input pair. It is interesting to observe that the instantaneous total energy density
at any point outside the sphere is independent of time when Eq. (30) is satisfied.
The difference between the mean electric energy density and the mean magnetic energy
density is zero at any point outside the sphere enclosing the antenna. Furthermore,

the instantaneous Poynting vector is independent of time, This implies that the
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power flow from the surface of the sphere enclosing a truly circularly polarized
omnidirectional antenna is a d-c flow, and the instantaneous power is equal to the
radiated power, These relationships are due to the dual nature of TE waves and IM
waves as well as the 90° difference in time phase between the two sets of waves,
To obtain the Q of the antenna, it is convenient to combine the energies
and dissipation in Zn of the TMn wave with that in Yn of the TEn wave and define a
new Qh as Ewwn/Pn where Wn is the mean electric or magnetic energy stored in Zn and
Yn’ and Pn is the total power dissipated in both, Then
Q = '1'|I’h |2 &y (31)
n 2 n dF
vhere Xn is the imaginary part of Zn. For p = 2na/A> n, this Qn is approximstely
equal to one half of the previous Q, defined for Z or Yn alone, [Eq. (12)]. 1If no
conduction loss and no stored enerzy inside the sphere are assumed, the expression
for Q of a circularly polarized omnidirectional antenna turns out to be identical
with that given by Bq. (13), except that Q, is given by Ha. (31) insteed of Eq. (12).
With expressions for G and Q identical with what were obtained previously,
we expect similar numerical results for the present csse under the various eriteria,

and the same physical limitation applies,

3. Further Considerations

The conclusion of fhis paper is self evident. To achieve a2 gain higher
than normal, we must sacrifice the bandwidth under the most favorable conditions.
The rest of the paper will be devoted to other considerations not covered in the
analysis.,

321 Practical Iimitations., The above analysis does not take into consideration many

practical aspects of antenna design. In the following, a qualitative discussion will
be given of some of the practical limitations.

It is assumed in the analysis that the antenna under consideration is located
in free space. The results, with 2 minor modification are applicable to the problem
of a vertically polarized antenna above a perfectly conducting ground plane. In
practice, this condition can seldom be fulfilled. The performance of an antenna
designed on the free-space basis will be modified by the presence of physical ob-
Jects in the neighborhood. Currents will be induced on the objects. They will give
rise not only to an additional scattered radiation field but also to a modification
of the original current distribution on the antenna structure. Both the gain and Q
of the antenna will be changed from their unperturbed values. The currents set up
on the objects vary as the unperturbed field intensity at the locations of the
objects. For the same power radiated, the r.m.s. amplitude of the unperturbed field
intensity in the neighborhood of the antenna is approximately proportionzl to the
square root of Q. In view of the rapid increase of Q as the gain of =n antenna is
increased above the normal value shown in Fig, 6, the disturbance of the field dis-
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tribution in space by physicel objects in the neighborhood of the antenna becomes
increasingly serious,

It is tacitly assumed in the analysis that physically it is possible to de~
slgn an antenna to achieve an arbitrary current distribution which satisfies the )
condition for minimum energy storage as discussed in Sec. 2.5. To obtain a gain
above normal, additional higher-order spherical waves must be generated outside the
sphere with a proper control of amplitudes and relative phases, The corresponding
current distribution will hsve rapid amplitude and phase variation inside the sphere,
The practical difficulty of achieving this current distribution will increase with
the gain.

We have avoided the question of conduction losses on the antenns structure.
In practice, the antemna structure will have conductivities differing from zero
or infinity. Neglecting the losses on the transmission line, it can be shown that
the minimum conduction loss of the antenna under consideration varies approximately
as the mean square of the electric or megnetic field on the surface of the sphere,
For a high-Q antenna, the ratio of the minimum conduction loss to the power radiated
is therefore approximately proportional to the Q of the antenna computed in the
absence of losses. Although this conduction loss is helpful in reducing the Q at
the input terminals, it reduces the efficiency and the power gain of the antenna,

The condition of minimum energy storage within the sphere is not always
realizable. On account of the unavoidable frequency sensitivities of the elements
of the antenna structure or the matching networks, the Q of a practical antenna
computed on the no conduction-loss basis will be usually higﬁer then the one derived
in this paper.

3.2 Bandwidth and Ideal Matching Network, We have computed the Q of an antenna from
the energy stored in the equivalent circuit and the power radiated, and interpreted
it freely as the reciprocal of the fractionsl bandwidth. To be more accurate, one
must define the bandwidth in terms of allowable impedance variation or the tolerable
reflection coefficient over the band. For & given antenna, the bandwidth can be
increased by choosing a proper matching network. The theoretical aspect of this
problem has been dealt with by R. M, Fanos. Figure 11 given here through his courtesy
illustrates the relations among the fractional bandwidth, absolute amplitude of the
reflection coefficient, and the parameter Zﬂa/A of an antenna which has only the

TMl wave outside the sphere. As shown in Sec. 2.6, this antenna has the lowest Q

of all antennas and its equivalent ci rcuit is shown in Fig, 3. The curve of Fig. 11
is computed on the assumption that the input impedance of the antenna is equal to

Zl, and an ideal matching network is used to obtain a constant amplitude of the
reflection coefficent over the band. The phase of the reflection coefficient,

6. R. M. Fano, "A Note on the Solution of Certain Problems in Network Synthesis",
April 16, 1948, RIE Technical Report No, 62,




however, varies ropidly near the ends of the band.
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Figure 1ll. Bandwidth of an ideal dipole with ideal matching network,
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