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SPECTRAL METHODS IN TIME FOR PARABOLIC PROBLEMS*

HILLEL TAL-EZERfY

Abstract. A pseudospectral explicit scheme for solving linear, periodic, parabolic problems is described.
It has infinite accuracy both in time and in space. The high accuracy is achieved while the time resolution
parameter M (M = O(1/At) for time marching algorithm) and the space resolution parameter N (N =
O(1/Ax)) must satisfy M = O(N'**) £ >0, compared to the common stability condition M = O(N?), which
must be satisfied in any explicit finite-order time algorithm.
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AMS(MOS) subject classification. 65M99

1. Introduction. In recent years, it has been shown that spectral methods can
provide a very useful tool for the solution of time-dependent partial differential
equations [3]. A standard scheme uses spectral methods to approximate the space
derivatives and a finite difference approach to march the solution in time. This tactic
results in an unbalanced scheme; it has infinite accuracy in space and finite accuracy
in time. It is obvious that the overall accuracy is influenced strongly by the relatively
poor approximation of the time derivative. Moreover, using finite-order explicit scheme
results in a very stringent stability condition. The timestep At must satisfy

1
(1.1) At=0(v>

where N is the number of grid points in space. This severe condition is commonly
overcome by resorting to implicit schemes. Varga [6] and Cody, Meinardus, and Varga
[2] approached these problems by using Chebyshev rational approximations of the
evolution operator. Thus, they overcome two drawbacks: low accuracy and stringent
stability condition. In fact, the implicit scheme presented in [2], [6] is unconditionally
stable, and the error in time decays exponentially.

Implicit algorithms involve inverting matrices. When the space approximation is
based on finite differences or finite elements (as in [2], [6]), the related matrices are
banded ones (e.g., tridiagonal), which makes them relatively easy to invert. On the
other hand, using spectral methods for the space discretization results in full matrices.
Inverting these matrices is a time-consuming procedure.

In this article we describe an explicit scheme for the solution of parabolic problems
when the space discretization is done by spectral methods. This scheme is highly
efficient (its efficiency is equivalent to having a stability condition At = O(1/N)) and
the error in time decays exponentially. In § 2 we present a model problem and its fully
discrete solution. The new approach for approximating the evolution operator is
described in §3. In §4 we carry out an error and stability analysis. Numerical
experiments confirming the theoretical results are presented in § 5.
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2 H. TAL-EZER

2. The model problem. Let us consider the heat equation

U —-GU=0, 0<x<Il,
(2.1) U(x,0)= U%x),
U ,t)=U(1, 1)

where G is the spatial operator

0,

2
2.2 G=a—s;.
(2.2) aaxz

Discretizing (2.1) in space using pseudospectral Fourier method, we obtain a semi-
discrete representation

(UN)z“ GnUn =0,
(2.3) Un(x, 0) = U\ (x),
Un(0, t) = Un(I1, t) =0

while
(2.4) Uy =PyU, Gy=PyGPy, U(I)\IZPNUO
and where for any function f(x), Pnf(x) is its sine interpolant at the collocation points
(2.5) ' x=jll/N, j=0,1,---,N—1,
or, more precisely,
N-1 .
(2.6) Pyf(x)= kZ ay sin (kx)
=0

where

2 N-1 .
2.7) a,=— Y f(x;)sin (kx;).

N ;5

Gy is an operator defined on N-dimensional subspace; thus, it can be represented as
a N X N matrix. The formal solution of (2.3) is
(2.8) Un(x, 1) =exp (1Gn) UN(x)

where exp (tGy) is the exact evolution operator. A fully discrete solution of (2.1) is
achieved by approximating this evolution operator. In [5], it has been shown that any
explicit time scheme can be represented as

(2.9) VX =Hu(tGN)UY

where Hy,(z) is a polynomial of degree M that converges to e” in the domain that
includes all the eigenvalues of the operator tGy. VX is the fully discrete solution and
H,,(tGy) is the numerical evolution operator.

3. The orthogonal polynomials scheme. Let E be the error that results from
approximating the evolution operator. Then
(3.1) E =[exp (tGy) — Hu (tGn)]UN.
The eigenvectors of the matrix tGy are Wy, - - -, Wy, where ( W,); =sin (kx;). Due to
the orthogonality of this set of eigenvectors, tGy is a normal matrix and there is an
orthogonal matrix Sy such that

(3.2) E =SNDANSN U
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while Dy is the diagonal matrix
(3.3) (DN) ik = €™ = Hyg (Ait)
and At are the eigenvalues of tGy. Since Sy is an orthogonal matrix, we have
S|l =|S~'|| = 1. Therefore,
IEN = ISn e DN LISN L, = | D,
or
(3.4) ||E||Lzénzlealx le* — Hy(2)|

where I is the domain that includes all the eigenvalues of tGy. In our case,
(3.5) I=[-aN?t,0].

A standard finite-order scheme can be characterized by a polynomial Hy,(z) based
on a Taylor expansion of e”. Thus, it has high accuracy only for a small z. The error
increases rapidly when z is increased. This property explains the poor accuracy and
stringent stability condition mentioned in the Introduction.

Let us take, for example, the modified Euler scheme. The numerical evolution
operator is

where .
3.7) At=t/n.
Thus,
1 1 L\
(3.8) Hy(z)=\1t—z+-—z (M =2n)
n 2n
and
1/n 1 1 2
(3.9) [Hy(2)]""=1+—z+——z".
n 2n

Equation (3.9) is the first three terms of Taylor expansion of e*”. Observing Fig. 1,
we find that H,,(z) converges to e* when

(3.10) —-2n=z=0.

e 0.5
I
I

N |

FiG. 1
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(For accuracy, a more stringent condition is necessary.) Using (3.5), (3.7), and (3.10)
results in the following stability condition:

2(1
(3.11) At=g<ﬁ‘g>.

Expression (3.4) suggests that a uniform approximation of e’ is preferable. Such an
approximation is achieved when we use Chebyshev polynomial expansion of the
exponential function (see the discussion in [5] for hyperbolic problems). Let

(3.12) w=%(z+R), -1=w=1
where
(3.13) R=3aN’t.
It then follows that
(3.14) ei=¢ R eRW=:Z_OO b Te(w)
where T, (w) is the Chebyshev polynomial of order k and [1]
(3.15) b.=e Re, Jl e T (w)(1—w?) V2 dw=e Re I (R)
-1

and

1 k=0,
(3.16) ck={2: k=1

I, (R) is the modified Bessel function of order k. Thus, the M degree polynomial
approximation of e” is

M
(3.17) HM(Z):kZ b Ti(w(z)).
=0
Because of (3.12), we substitute the operator Fx defined as
1

for w. Hy,(Fy) is the numerical evolution operator. Thus, the fully discrete numerical
solution of (2.1) is

M
(3.19) VN = Hy(Fy) US =kZ b T (FN) U
=0

T.(Fy)UY is computed by using the recurrence relation

Tk(x)zszkfl(x)—Tk*Z(x)) kzza

(3.20)
To(x) =1, T,(x)=x.
Hence,
(3 21) Tk(FN)U(l)\IzzFNTk—l(FN)U(I)\I_Tk—Z(FN)U(I)\I’ k=2,

T(Fx)UN=UY\, T(Fn)U%\=FyU\.
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The algorithm defined by (3.19), (3.21) can be regarded as a three-level scheme
since it uses the recurrence relation. Therefore, it has the disadvantage of requiring
extra memory. There are two possible ways to overcome this drawback. The first is to
convert (3.19) to a power series in Fy and use the Horner scheme to compute V.
The disadvantage of this approach is its sensitivity to roundoff errors. The second is
based on calculating the roots of Hy,(w). Let us assume that the roots are

(322) 01, T, GM'

Since the b, are real, every complex root appears with its conjugate. Rearranging (3.22)
in such a way that the first 2p roots are p conjugate pairs, we get

(323) /‘Ll’/j’l’...a:u'pala’pa:u’p*—la"'a/-‘/M—p'
Thus
p ) M—p
(3.24) Hy(w)=ao [ A—aw+Bw?) [l (1—yw),
1=1 i=p+1
while
M/2
oy = Z bk’
k=0
(3.25)

Bi = 2Re/“'i/|:u'i|27 Bi = 1/'/‘1’1‘[2’ 1 élép,

yi=1/m, p+1=isM-p.

Hence we get

P M-—p
(3.26) Hy (Fn) = ag ‘Hl [I_aiFN_i_BiF%\I] ) Hﬂ [1- '}’iFN]U(;\h

= i=p

Each algorithm described above can be used as a one-step method by calculating

the solution at the final time ¢ directly from the initial data. It can also be used as a
marching scheme when considering intermediate results. The size of the timestep A¢
depends only on the information we want to obtain from the numerical procedure. At
enters instead of f in the expressions above, and the parameter R is determined
accordingly. In any case, the refinement of the algorithm is done by increasing the
degree of the polynomial and not by decreasing the size of the timestep.

‘4. Accuracy and stability. Using (3.4), (3.15), and (3.17), we get
(4.1) |Ell,=2e %] ¥ L(R)T(w)|, -1=w=Ll
k=M-+1

Since e®" is an entire function, it satisfies the following theorem ([4, pp. 94-96]).
TueoreM (S.N. Bernstein). Let f(w) be un entire transcendental function that is
real for real w. Then there exists a sequence of integers ny, n,, - - + with n, >0 such that
the relation
En,(f)

. . l‘ —_—
(4.2) ul$|anu+ll

holds, where «, are the coefficients in the expansion

(4.3) £(w) =°‘7+§ axTe(w)
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and
o n
(4.4) E(f)=|f(w) =5~ ¥ aTi(w)].
=1
There is a sequence of integers n,, u=1,2,- -+ of the above type provided

(45) (1) an“—i—l#oa /‘L=1’2,. Tt and

o0

(4.6) (2) 2 |ak|:o(|an,‘+l|) as p > 0o.

k=n,+2

In our case we can take n, =, u=1,2,- -+, and it follows that
(4.7) IEll,=2 e * Iy (R)(1+ O(1)).
The asymptotic expansion of I,(R) is [1]:
e {I_M—l (=D@=9) (r-DE-9w=25_ }

(4.8) I(R)~

V27R 8R 21(8R)? 3!1(8R)’
where
(4.9) ' w=4k>.
Hence,
(4.10) 2 e RI(R)~ :2}!;[1—8—"§+%<8—"§)2—-~-+0(%>]
or
(4.11) 2e_RIk(R)~\/%exp(—p,/SR)+O(R_3/2).
From (4.7), (4.9), and (4.11), we conclude that an & time accuracy,
(4.12) IE],=e,
is achieved when
(4.13) M = O(R"?).
It is clear that satisfying (4.13) guarantees stability. In fact, using (3.1), (4.12), we get
(4.14) lexp (1Gn) = Hy (1Gx)|| = &5
hence,
(4.15) I Har (1Gn) | = llexp (1Gn) || + e

Since exp (tGy) is a stable operator [3], H,,(tGy) is stable as well.
R is equal to aN’t/2; thus from (4.13) we can conclude the main result of this
analysis. In order to achieve & time accuracy, stable solution of (2.3), M must satisfy

(4.16) M = O(N).

A similar analysis for any finite-order scheme based on Taylor expansion of e* will
imply that M [M = O(1/At); see (3.7)-(3.8)] must be proportional to N?; thus the
advantage of the orthogonal polynomials approach is obvious.
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ALGORITHM REFINEMENT. From (3.13), (4.7), (4.9), and (4.11), we get

2 1 1/2 M N 2
(4.17) Ez—(—> exp(—(——/—)—>.

N \amt at
Expression (4.17) suggests refinement of the algorithm while
(4.18) M=N* (a>1)

will yield an exponential decay of the error. The accuracy thus achieved is the desired
spectral accuracy.

5. Numerical results. Table 1 presents the stability properties of the OPS
(Orthogonal Polynomial Scheme) compared to the modified Euler scheme, which is
second order in time. We used the model problem (2.1) with a =1, and initial data

(5.1) U°(x) =sin (3x).

The solution is computed at ¢ =1. M indicates the minimal number of applications of
the operator tGy we must use to achieve stable (meaningful) results.

Table 2 clarifies the spectral convergence of the OPS scheme. In this table we
included the results for the modified Euler scheme as well for the sake of comparison.
The problem solved is

Ut - Uxx = 0’
(5.2) 0=x=2m

U%x)=x(x—2m),
Note that the periodic continuation of U°(x) belongs to C°; thus the Fourier coefficients
of U%x) are decaying slowly. The solution is computed at ¢ =1. The refinement of
the modified Euler scheme is done while M satisfies

M =0.97x(N/2).
For the OPS algorithm, M satisfies
M=25x(N/2)"%

TABLE 1
Modified Euler OPS
N M M
16 48 24
32 192 48
64 768 96
TABLE 2
Modified Euler OPS
N M L,-error Ratio M L,-error Ratio
16 62 .3791-04 17.4 26 1026 -04 97
32 250 2126 -05 16-2 61 .1107 - 06 134
64 1000 .1339-06 ’ 140 .8263-09
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The increasing ratio between the L,-errors of two successive refinements verifies the
spectral convergence of the OPS algorithm.

In Table 3 we compare the OPS to the modified Euler scheme from the point of
view of the amount of work needed to achieve a certain degree of accuracy. The
problem solved is U, — U,, =0 with U°(x) =sin (3x). The L,-error is computed at the
time level ¢t =1, and the space resolution is N =32.

In the next set of numerical experiments we used our algorithm to solve a variable
coefficient problem, which can be presented as follows:

(un),— Grun = 51(x) + t55(x),

o) un (%, 0) = uR(x),
while
(5.4a) Gn = PyGPy,
(5.4b) G=a(x) Lot b(x) Lt e(x).
0x x
If the exact solution of (5.3) is
(5.5) un(x, t)=ts(x),
then
(5.6) : uin(x) =0,
(5.7) 5,(x) = s(x),
(5.8) $2(x) = —Gn(Si(x)).
The formal solution of (5.3) is
(5.9) u :fO(GNt)u(I)V+f1(GNt)s1 +£,(Gnt) s,
where
(5.10) fo(Gnt) =exp (Gnt),
(5.11) fi(Gnt) = J[ exp (Gnr) dr = t(Gnt) " '(exp (Gnt) —I),

t

(512)  fo(Gnat) = J exp (Gn7)(t—7) dr = t*(Gut) *(exp (Gnt) — Gut —I).

0

Since u% =0, the first term on the right-hand side of (5.9) is zero. Thus, in order to
implement our algorithm we have to approximate the following functions:

t ezt _1 -
(5.13) ﬁ(zt)=J e"dr=t ; = tf1(zt), ze D,
0 z
! e’ —zt—1 -
(5.14) fz(zt)=J e(t—71) dr =t ————=tf(zt), ze D
0 (zt)
TABLE 3
L,-error M (modified Euler) M (OPS)
1.3x1072 200 50
1.3x107* 2,000 60

1.3%x107° 20,000 70
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where D is the domain in the complex plane that contains the eigenvalues of the
operator Gy. The domain D can be approximated by doing a Fourier analysis of the
constant coefficients operator

(5.15) Goatip Lo
ax 0x
where
(5.16a) a =max |a(x)|,
(5.16b) b =max |b(x)|,
(5.16¢) Cmax = Max |c(x)|; Cmin = Min jc(x)|.
We get
(5.17) D={x+iy|—(N?+ Cpax) = X = —Cpin, [y| = b}.
Since
(5.18) N+ Cpax > b,
using the domain D where
(5.19) Dzz{xl—(N2+ Crmax) = X = —Crmin>

we obtain a good approximation of D. In order to write f, ,fz as a Chebyshev polynomial
expansion we first must change variables. Define

(5.20) z=Rw+Q, —-1=w=1
where
(521) RZ%[N2+cmax_cmin]a
(522) Q:—%[N2+cmax+cmin];
then
. R QteRtw_l ©
. = == da. T,
(5.23) fi(zt) = fi(wt) Riw+ Qi kE::o (Ti(w),
~ 1 - Hlwn-1_ =
. t)=— t)—1]="F—"—= T (w).
(5.24) Faet) = S a0 1= = ¥ g i)
From (3.14), (3.15), (3.16) we have
(5.25) et = Y bTi(w),
k=0
while
1, k=1,
(526) bk = Cka(Rt), C = {2, ké 2,

and I, are modified Bessel functions. Substituting (5.25) in (5.13) and (5.24), we get

o0 0 1 o0 ~ o
(5.27) Rw ¥ 4T, +Q ¥ dka:_[ > kak—l] (bk:eOtbk)a
k=0 k=0 t Lk=o

(5.28) Rw kZO ngk+QkZO ngk=_[ > dka—l]-
= = 0

t Lk=
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Since Chebyshev polynomials satisfy the recurrence relation

(5.29) Tev1 =2wT — Ty,
we get
(5.30) wT =3 T+ Tisy).

Using (5.30) in (5.27), (5.28) results in tridiagonal systems of equations for the two
sets of unknowns:

{di}, {&}, 0=k=N/2

In our numerical experiments, we used

(5.31) s1(x) =exp (—4(x—m)?),
(5.32) a(x)=1./(2.+cos x),
(5.33) b(x)=1./(2.+sin x),
(5.34) c(x)=-20./(2.4+cos x).

The results at ¢t =1 are presented in Table 4.
We also used the OPS algorithm to compute the solution at ¢ = 10, and the results

are presented in Table 5.
Observing Tables 4 and 5, we notice that M does not depend on t. This can be

explained as follows. For large ¢, |exp (Gnt)|| is very small. Thus, since (5.11), (5.12),
we have

(5.35) filGat)=—GH!,
(5.36) Fi(Gnt) =—GR(Gnt+1),

which means that for large £, approximating fi(Gyt) is equivalent to inverting Gy and
approximating f,(Gnt) is equivalent to inverting (Gy ).

6. Conclusion. The algorithm presented in this paper achieves the goal of spectral
accuracy in time and space for the simple model problem (2.1). We believe that this
approach can be useful for more complicated problems. In fact, the scheme described
in § 3 is applicable whenever we can represent the solution as exp (tGy) Uy and the
eigenvalues of tGy are grouped close to the real axis.

TABLE 4
Modified Euler OPS
N M L,-error M L,-error
16 30 4885 —-01 16 .4885—-01
32 120 .1250-05 40 1173 -05
64 480 1296 - 05 100 1258 - 08
TABLE 5
N M L,-error (OPS)
16 16 .5358-01
32 40 .2377-05

64 110 .3968 — 07
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