

Measuring Board Parasitics in High-Speed Analog Design

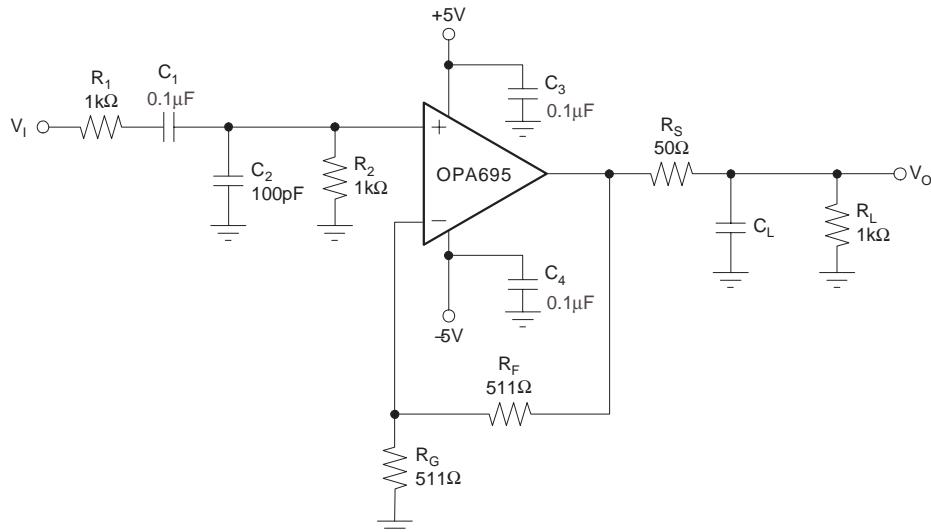
Rea Schmid

High Speed Products

ABSTRACT

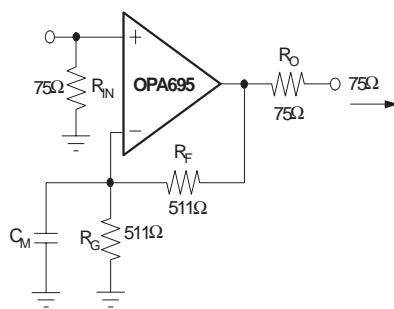
Successful circuit designs using high-speed amplifiers can depend upon understanding and identifying parasitic printed circuit board (PCB) components. Simulating a design while including PCB parasitics can protect against unpleasant production surprises. This application report discusses an easy method for measuring parasitic components in a prototype or final PC board design by using a standard oscilloscope and low frequency waveform generator to collect valuable information for SPICE simulation.

Contents

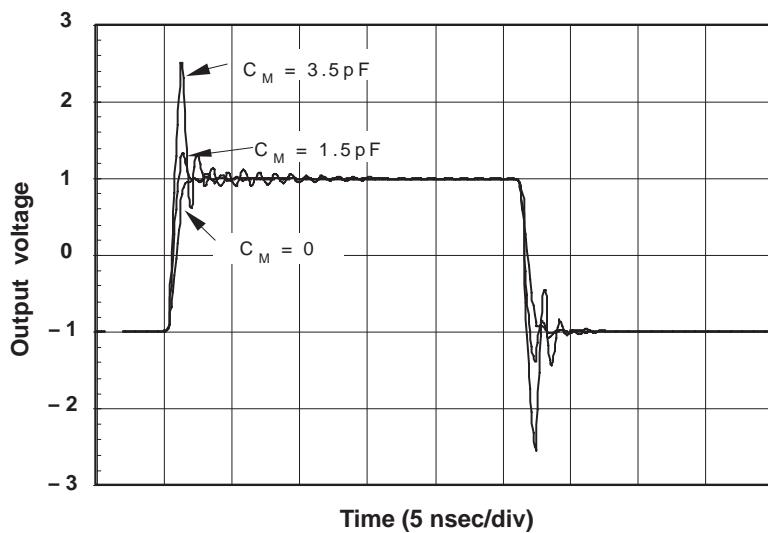

1	High Speed Circuit Design	2
2	Determining the Source of the Capacitance	3
3	Capacitive and Inductive Measurement Techniques	4
4	Measurement Notes and Aids	8

List of Figures

Figure 1.	Example Circuit for 900MHz Frequency Amplifier, Gain 2 Stage	2
Figure 2.	Example Circuit for 900MHz Frequency Amplifier, Gain 2 Stage, with Parasitic Inverting Node Capacitance	2
Figure 3.	Time-Domain Plot for Current Feedback Amplifier	3
Figure 4.	Capacitance Test Measurement Circuit Using an HP8116A Function Generator	4
Figure 5.	Computing V_2 for a Triangle Wave V_1	4
Figure 6.	Oscilloscope Graph Showing 2V Ramp and Output Square Wave	5
Figure 7.	Measuring a Parasitic Trace Inductance	6
Figure 8.	Stimulus and Response Waveforms for Parasitic Inductance Test	6
Figure 9.	Scope Preamp for Capacitance Measurement	8
Figure 10.	Scope Preamp for Inductance Measurement	8


1 High Speed Circuit Design

IC vendors and manufacturers frequently publish recommendations for proper PCB layout of a given IC device so that a circuit design will be more likely to enable the device to achieve its specified performance. As a circuit design is tweaked for a particular application, trouble can often appear in the form of parasitic board components. For example, the circuit shown in Figure 1 uses a 900MHz, gain of 2 amplifier; any amplifier with > 200MHz bandwidth will be very sensitive to PCB parasitics.


Figure 1. Example Circuit for 900MHz Frequency Amplifier, Gain 2 Stage

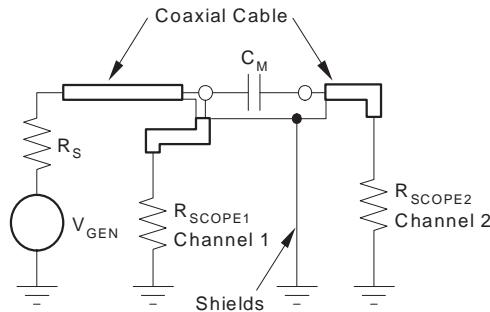
At first inspection, this amplifier design appears to be relatively sound. However, this circuit has multiple issues, not only in the layout of the PCB but also in the selected components' actual high frequency model. It is generally not difficult to obtain high frequency models for the component values; these models are available from the manufacturer's data sheets. They can also be measured using an impedance function found in some network analyzers. Figure 2 shows just the amplifier and the parasitic capacitance added from the printed circuit trace connecting to the inverting input of the amplifier. This slight capacitance, C_M , can have a significant effect on the amplifier's performance. The task here will be to measure the PCB trace capacitance and/or inductances that come with a high-speed layout that can affect performance.

Figure 2. Example Circuit for 900MHz, Gain = 2, Video Line Driver, with Parasitic Inverting Node Capacitance

It can be very difficult to extract the correct parasitic components at high frequency from a PCB. This iterative process can involve many hours of careful measurements. High-speed amplifiers are considerably more sensitive to the parasitic capacitance found at the I/O pins. Excess capacitance at the inverting node of a current feedback amplifier, for instance, results in the ringing of the amplifier output. This effect can be seen in the time-domain plot of Figure 3, where three different layout parasitic C_M values are assumed in the simulation of Figure 2.

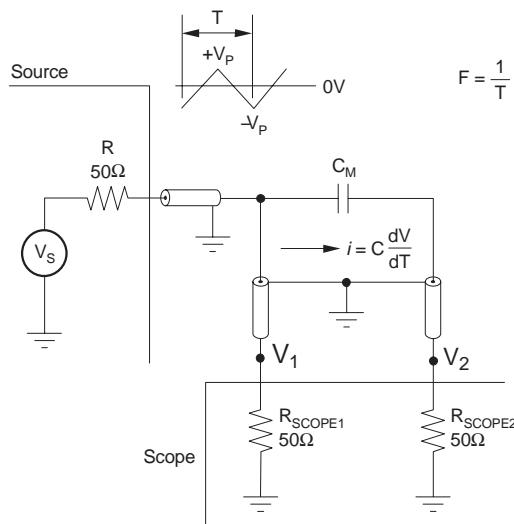
Figure 3. Time-Domain Plot for Current Feedback Amplifier

2 Determining the Source of the Capacitance


Regardless of whether or not one is an experienced engineer, it is easy to overlook these parasitics for high-speed current feedback op amps (CFA) or voltage feedback op amps (VFA). Adding parasitic capacitance in parallel with the low resistor values (R_g) will produce undesirable results. When capacitance is in parallel to the R_f (feedback resistor), then one questions why the full bandwidth was not obtained. How then does the engineer or designer determine parasitic capacitance and its influence on the final board design? By measuring the capacitance and including this data in the simulation circuits.

As a typical example, Figure 2 is an OPA695 high-bandwidth amplifier, at a gain of 2, which uses a feedback resistor (R_f) of 511Ω and gain setting resistor (R_g) of less than or equal to 511Ω . Adding a few pF in the wrong place (as shown in Fig. 2) will generate widely variant results when one is trying to obtain fast settling for an A/D, D/A or video line driver application.

The initial circuit analysis most likely did not account for any parasitic capacitance due to the board layout. These values frequently change from the prototype layout to the eventual final design. By using some simple circuit theory, one can develop a straightforward measurement system to determine this capacitance or inductance.


3 Capacitive and Inductive Measurement Techniques

A very easy way to measure layout capacitance and inductance is to use large signal triangle waves as a test waveform. The first step in this process is to isolate the parasitic capacitance, as shown in Figure 4. From this simple circuit, one can define an extraction technique for the unknown parasitic in the circuit, C_M .

**Figure 4. Capacitance Test Measurement Circuit
Using an HP8116A Function Generator**

In this example, an HP8116A function generator (V_{gen}) is connected as shown in Figure 4. The center conductor of two coaxial cables is soldered to the PCB trace and sense line into Channel Two to ground (or other planes/traces of interest). The shields are tied together as shown in Figure 4. The two measurement cables are connected to Channel One and Two of the oscilloscope, set to show an input 50Ω termination (R_{scope1} , R_{scope2}).

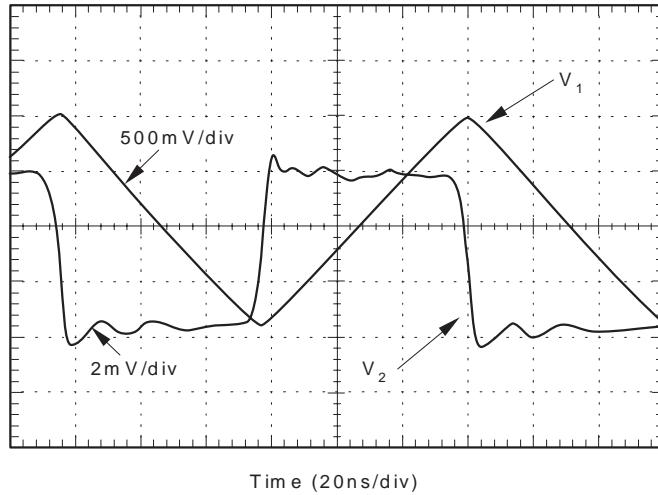
Figure 5. Computing V_2 for Triangle Wave V_1

Looking at the analysis circuit of Figure 5, and recognizing that V_1 is a triangle wave, we can easily compute the current through the unknown capacitance as simply:

$$i = C \frac{dV}{dt} \quad (1)$$

The total dV/dT for the triangle wave is twice the slope on each one half-cycle if peak-to-peak values are used for analysis. For a triangle wave of total period T , the dV/dT is easily derived as:

$$\frac{dV}{dT} = \frac{2 \cdot V_{1_{pp}}}{\frac{T}{2}} = V_{1_{pp}} \cdot F \cdot 4 \quad (2)$$

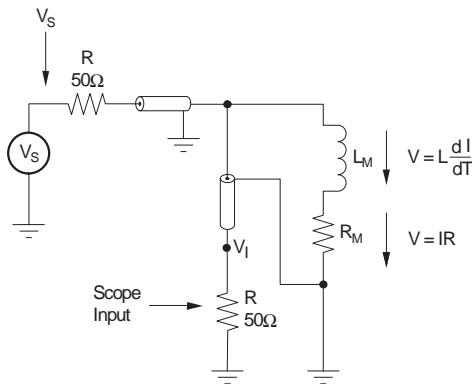

Since it is only the current due to this dV/dT at V_1 that gets through the unknown parasitic capacitance to the termination resistor (the other 50Ω scope input), the measured voltage at this second scope input will be

$$V_{2_{pp}} = (50\Omega)C \frac{dV}{dT} = (50\Omega)C \cdot V_{1_{pp}} \cdot F \cdot 4 \quad (3)$$

This can be solved to give an expression for the unknown C as an equation based on the ratio of the peak-to-peak voltages at measurement points V_1 and V_2 .

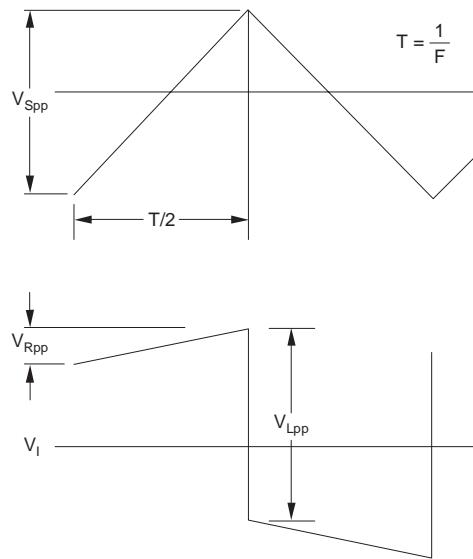
$$C_M = \frac{V_{2_{pp}}}{V_{1_{pp}}} \cdot \frac{1}{4(50\Omega)F} \quad (4)$$

For example, using a $2V_{pp}$ triangle wave at 10MHz to measure the parasitic capacitor on the inverting node of a manufacturer-supplied demo board showed the waveforms of Figure 6.


**Figure 6. Oscilloscope Graph Showing
2V Ramp and Output Square Wave**

Plugging this data into Equation 4 gives:

$$C_M = \frac{5.8mV}{1.9V} \cdot \frac{1}{4(50\Omega)F} \quad (5)$$


$$\text{or } C_M = 1.5pF \quad (\text{with } F = 10\text{MHz}) \quad (6)$$

A similar technique may be used to estimate the trace inductance where we must now generate a dI/dT times an unknown L to produce a voltage. Figure 7 shows the measurement circuit used. Here, the source drives a triangle wave current into what looks very much like a dead short, while the scope input is set up to measure the small voltage produced by the two voltage components. In this case, there will be both an IR component due the small trace resistance (R_M) and an L^*dI/dT term due to the trace inductance (L_M).

Figure 7. Measuring a Parasitic Trace Inductance

Figure 8 shows the resulting waveform that will be seen at V_1 . The large step in voltage (V_{Lpp}) may be attributed to the shift from a positive dI/dT to a negative dI/dT at the triangle peaks. The small ramp will be due to the resistance element over each half-cycle of ramping current into the trace under test. The current into the trace can be estimated very nearly as simply the source voltage (V_S) divided by its 50Ω output impedance. The 50Ω measurement path into the scope does not enter into the equations because it is essentially shunted by a much lower impedance. It is critical here to use the correct value for the stimulus V_{Spp} . For instance, programming the HP8116 to a produce a $5Vpp$ output is actually producing a $10Vpp$ stimulus for the purposes of Figure 8.

Figure 8. Stimulus and Response Waveforms for Parasitic Inductance Test

Each triangle half-cycle produces a

$$\frac{V_{S_{pp}}}{R} = I_{test} \quad (7)$$

ramp into the trace under test. Over a half-cycle, this dI/dT will be $V_{S_{pp}}/(R \cdot T/2)$. At each peak in the stimulus triangle wave, the slope changes polarity, giving us double the dI/dT to produce the $V_{L_{pp}}$ step in Figure 8. That step is then given by:

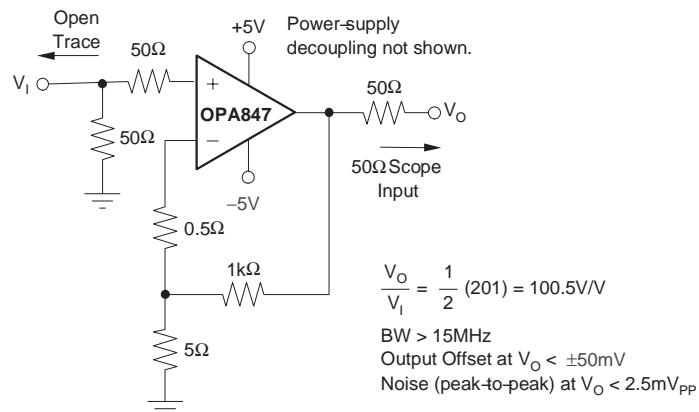
$$V_{L_{pp}} = \frac{L_m \cdot 2 \cdot V_{S_{pp}}}{\frac{R \cdot T}{2}} = \frac{L_m \cdot 4 \cdot V_{S_{pp}}}{R \cdot T} = \frac{L_m \cdot 4 \cdot F \cdot V_{S_{pp}}}{R} \quad (8)$$

Solving for L_m ,

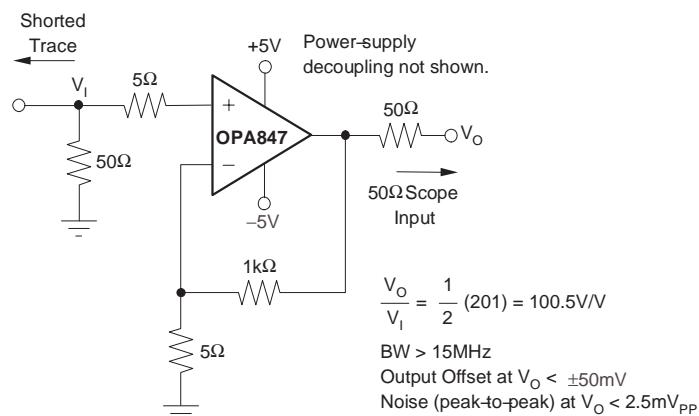
$$L_m = \frac{V_{I_{pp}} \cdot R}{4 \cdot V_{S_{pp}} \cdot F} \quad (9)$$

The total change in current over one half-cycle will produce the resistive part of the response waveform in Figure 8.

$$V_{R_{pp}} = \frac{V_{S_{pp}}}{R} \cdot R_m \quad (10)$$


Solving for R_m ,

$$R_m = R \cdot \frac{V_{R_{pp}}}{V_{S_{pp}}} \quad (11)$$


4 Measurement Notes and Aids

To keep the cable capacitances from interacting with this measurement technique, relatively low frequencies (<10MHz, and preferably < 2MHz) but high amplitudes are used. The resulting measured voltages, however, can be quite small. Using a very high gain bandwidth, low noise, high DC precision scope preamp can improve measurement accuracy when very low capacitances or inductances are being measured. Figures 9 and 10 show an excellent choice for this scope preamp, where they differ only in how DC bias current cancellation is achieved given the different source impedances of the capacitive or inductive tests. The 50Ω resistor shown in Figure 5 as $R_{\text{scope}2}$ and R in Figure 7 becomes the input termination 50Ω in Figures 9 and 10.

The OPA847, used in this example preamp, provides 3.9GHz gain bandwidth product with $< 0.9\text{nV}/\sqrt{\text{Hz}}$ input noise voltage and exceptional DC accuracy. At the very high gains shown in Figures 9 and 10 (201V/V for the amplifier), the bandwidth will be reduced to approximately 18MHz. With stimulus triangle waves of < 2MHz frequency, this should be adequate to pass enough harmonics of the response to measure the desired voltage steps. To limit noise on the scope waveform, using its 20MHz bandwidth option is also recommended. The preamp of Figure 9 would be inserted at V_2 in Figure 5, while the preamp of Figure 10 would be inserted at V_1 in Figure 7.

Figure 9. Scope Preamp for Capacitance Measurement

Figure 10. Scope Preamp for Inductance Measurement

References

Quint, D.W., Aziz, A., Kaw, R. and Ferezalonso, F.J. Measurement of R, L and C Parameters in VLSI Packages. *Hewlett-Packard Journal*, October, 1990. Pp. 73 – 77.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated

射 频 和 天 线 设 计 培 训 课 程 推 荐

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立，致力并专注于微波、射频、天线设计研发人才的培养；我们于 2006 年整合合并微波 EDA 网(www.mweda.com)，现已发展成为国内最大的微波射频和天线设计人才培养基地，成功推出多套微波射频以及天线设计经典培训课程和 ADS、HFSS 等专业软件使用培训课程，广受客户好评；并先后与人民邮电出版社、电子工业出版社合作出版了多本专业图书，帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、研通高频、埃威航电、国人通信等多家国内知名公司，以及台湾工业技术研究院、永业科技、全一电子等多家台湾地区企业。

易迪拓培训课程列表：<http://www.edatop.com/peixun/rfe/129.html>

射频工程师养成培训课程套装

该套装精选了射频专业基础培训课程、射频仿真设计培训课程和射频电路测量培训课程三个类别共 30 门视频培训课程和 3 本图书教材；旨在引领学员全面学习一个射频工程师需要熟悉、理解和掌握的专业知识和研发设计能力。通过套装的学习，能够让学员完全达到和胜任一个合格的射频工程师的要求…

课程网址：<http://www.edatop.com/peixun/rfe/110.html>

ADS 学习培训课程套装

该套装是迄今国内最全面、最权威的 ADS 培训教程，共包含 10 门 ADS 学习培训课程。课程是由具有多年 ADS 使用经验的微波射频与通信系统设计领域资深专家讲解，并多结合设计实例，由浅入深、详细而又全面地讲解了 ADS 在微波射频电路设计、通信系统设计和电磁仿真设计方面的内容。能让您在最短的时间内学会使用 ADS，迅速提升个人技术能力，把 ADS 真正应用到实际研发工作中去，成为 ADS 设计专家…

课程网址：<http://www.edatop.com/peixun/ads/13.html>

HFSS 学习培训课程套装

该套课程套装包含了本站全部 HFSS 培训课程，是迄今国内最全面、最专业的 HFSS 培训教程套装，可以帮助您从零开始，全面深入学习 HFSS 的各项功能和在多个方面的工程应用。购买套装，更可超值赠送 3 个月免费学习答疑，随时解答您学习过程中遇到的棘手问题，让您的 HFSS 学习更加轻松顺畅…

课程网址：<http://www.edatop.com/peixun/hfss/11.html>

CST 学习培训课程套装

该培训套装由易迪拓培训联合微波 EDA 网共同推出, 是最全面、系统、专业的 CST 微波工作室培训课程套装, 所有课程都由经验丰富的专家授课, 视频教学, 可以帮助您从零开始, 全面系统地学习 CST 微波工作的各项功能及其在微波射频、天线设计等领域的设计应用。且购买该套装, 还可超值赠送 3 个月免费学习答疑…

课程网址: <http://www.edatop.com/peixun/cst/24.html>

HFSS 天线设计培训课程套装

套装包含 6 门视频课程和 1 本图书, 课程从基础讲起, 内容由浅入深, 理论介绍和实际操作讲解相结合, 全面系统的讲解了 HFSS 天线设计的全过程。是国内最全面、最专业的 HFSS 天线设计课程, 可以帮助您快速学习掌握如何使用 HFSS 设计天线, 让天线设计不再难…

课程网址: <http://www.edatop.com/peixun/hfss/122.html>

13.56MHz NFC/RFID 线圈天线设计培训课程套装

套装包含 4 门视频培训课程, 培训将 13.56MHz 线圈天线设计原理和仿真设计实践相结合, 全面系统地讲解了 13.56MHz 线圈天线的工作原理、设计方法、设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体操作, 同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试。通过该套课程的学习, 可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹配电路的原理、设计和调试…

详情浏览: <http://www.edatop.com/peixun/antenna/116.html>

我们的课程优势:

- ※ 成立于 2004 年, 10 多年丰富的行业经验,
- ※ 一直致力并专注于微波射频和天线设计工程师的培养, 更了解该行业对人才的要求
- ※ 经验丰富的一线资深工程师讲授, 结合实际工程案例, 直观、实用、易学

联系我们:

- ※ 易迪拓培训官网: <http://www.edatop.com>
- ※ 微波 EDA 网: <http://www.mweda.com>
- ※ 官方淘宝店: <http://shop36920890.taobao.com>