

VC0568-V33

Mobile Phone Video Processor

Datasheet

Version 1.2a

Apr 12th, 2005

Notes1: The information is subject to change without notice. Before using this document, please confirm that this is the latest version.
Notes2: Not all products and/or types are available in every country. Please check with a Vimicro sales representative availability and additional information.

Important Notice

Vimicro Corporation and its subsidiaries reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Vimicro' terms and conditions of sale supplied at the time of order acknowledgment.

Vimicro does not warrant or represent that any license, either express or implied, is granted under any Vimicro patent right, copyright, mask work right, or other Vimicro intellectual property right relating to any combination, machine, or process in which Vimicro products or services are used. Information published by Vimicro regarding third-party products or services does not constitute a license from Vimicro to use such products or service or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Vimicro under the patents or other intellectual property of Vimicro.

Reproduction of information in Vimicro data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Vimicro is not responsible or liable for such altered documentation.

Resale of Vimicro products or services with statements different from or beyond the parameters stated by Vimicro for that product or service voids all express and any implied warranties for the associated Vimicro product or service and is an unfair and deceptive business practice. Vimicro is not responsible or liable for any such statements.

Table of Contents

1. OVERVIEW	4
3. PIN LAYOUT	8
3.1 VC0568 Pin-out Diagram	8
3.2 Pin description	9
4. SYSTEM BLOCK DIAGRAM	13
5. CHIP BLOCK DIAGRAM	14
6. CHIP CONFIGURATION	17
6.1 Multiplex 80 Type0	18
6.2 Multiplex 80 Type1	18
6.3 Multiplex 80 Type2	19
6.4 Multiplex 68 Type3	19
6.5 Separate Page 80 Type4	20
6.6 Separate Page 80 Type5	20
6.7 Separate Page 80 Type6	21
6.8 Separate Page 68 Type7	21
7. OPERATION MODE	22
7.1 Viewfinder Mode	22
7.2 Capture Mode	22
7.3 Display Mode	23
7.4 JPEG decode mode	23
7.5 JPEG Encode Mode	24
7.6 Through Mode	24
7.7 Direct Display Mode	25
8. ELECTRICAL CHARACTERISTICS	26
8.1 Absolute Maximum Ratings	26
8.2 Recommended Operating Conditions for 3.3V IO Application	27
8.3 Working Current	28
8.4 AC Characteristics	29
8.4.1 Host interface	29
8.4.2 LCD panel interface	31
8.4.3 Sensor Interface	32
9. MECHANICAL DIMENSIONS	33
9.1 Top View	33
9.2 Bottom View	33
9.3 Side view	34
9.4 Delta A	34
9.5 Delta B	35
9.6 Dimensional Reference	36
9.7 Marking information	36
10. REVISION HISTORY	37
11. CONTACT INFORMATION	38

1. Overview

VC0568 is a mega-pixel camera controller chip for mobile application. It enables camera phone to capture and display still image and video clip at real-time on mobile phone screen. By using VC0568, the burden on mobile phone host CPU to process image and graphics can be reduced dramatically.

With direct interface to CMOS/CCD image sensor and LCD display module, VC0568 can provide high-quality, low-latency video stream to most popular LCD panels with desired resolution and color depth. VC0568's image pipeline integrates Image Signal Processing unit, Image Post Processing unit, JPEG codec as well as JPEG buffer allocated from the on-chip 384KB SRAM for storing 1.3M-resolution JPEG images. A powerful yet flexible image sizer embedded in VC0568 further allows mobile phone users to perform up to 16x digital zoom and pan function in viewfinder, capture and display mode. The on-chip JPEG codec may also be employed by host CPU for various encoding/decoding tasks.

Within its display sub-module, VC0568 provides Graphics RAM which allocated from the on-chip 384KB SRAM for host CPU to write to LCD panel directly. VC0568 supports overlay and alpha-blending functions between video stream and the graphics from host CPU, along with an integrated graphics engine delivering graphics acceleration for clipping, line drawing, BitBLT, etc. VC0568 also provides a direct path from host CPU to LCD panel.

VC0568 comes with 100-pin fpBGA package at 7mm x 7mm footprint.

VC0568 has the following applications

- Mobile Phones
- Personal Digital Assistants
- Wireless Communicators
- Video Phones

2. Feature

- **System Architecture**
 - Provide a transparent, flexible physical bridge between mobile phone baseband processor, image sensor and LCD panel
 - With camera function off, host CPU can refresh LCD directly
 - To add camera function, mobile phone design only need minimal change with the help of VC0568 and a API set provided by Vimicro
- **Low Power Design**
 - Power Consumption is optimized from Architecture to Circuit Design
 - 100uA in sleep mode
 - 20mA in preview mode in 160x120 @ 30fps
 - 1.8V for core
 - 2.5, 2.85, 3.0, 3.3 V for I/O
- **Small Form Factor**
 - 7 mm x 7 mm
- **Host Interface**
 - Support ARM, 80-type and 68-type bus
 - In-direct addressing mode:
 - 1-bit address bus and 16-bit data bus
 - 1-bit address bus and 8-bit data bus
- **Sensor Interface**
 - Support off-shelf CIF/VGA CMOS and CCD sensors
 - Support off-shelf 1.3Mega pixel CMOS and CCD sensors
 - 8 bit RGB Bayer or 8 bit YUV input
 - Strobe flash timing control
- **Image Signal Processing**
 - Real-time dead-pixel detection and compensation
 - Auto exposure
 - Auto white balance
 - Auto gain control
 - Auto focus control
 - Programmable AE/AWB windows
 - Auto flicker detection and cancellation
 - Edge-adaptive CFA interpolation (5x5 matrix)
 - Configurable gamma correction
 - Configurable color correction
 - Configurable white balancing
 - Configurable brightness, color saturation and hue

- Back light compensation
- Configurable image noise reduction
- Configurable image sharpness control
- **JPEG codec**
 - Standard baseline JPEG codec with dynamic bit-rate control
 - Encoding: 4:2:2, 4:1:1, 4:2:0
 - Decoding: 4:4:4, 4:2:2, 4:1:1, 4:2:0
- **Image sizer and digital zoom**
 - Programmable image sub-sampling with anti-aliasing filtering
 - Programmable image dithering
 - Up to 16x digital zoom during preview, capture, postview
 - Up to 2x for SXGA
 - Up to 4x for VGA
 - Up to 8x for SIF
 - Up to 16x for QSIF
- **Programmable image resolution and data format**
 - Programmable output image resolution including standard resolutions:
 - 1280 x 960
 - 1024 x 768
 - 800 x 600
 - 640 x 480
 - 320 x 240
 - 160 x 120
 - Thumbnail (40x30)
 - Multiple output image formats
 - JPEG
 - RGB: 888, 666, 565, 444
 - Gray
- **LCD Controller Interface**
 - Support dual LCD panels
 - Support TFT or STN LCD panels
 - Supports LCD with following bit-depth: 8/12/16/18/24
 - Supports LCD with following size: 160 x 120 ~ 320 x 240
 - Support Picture-in-Picture function
 - Separate controls for layer A and layer B
 - Support Backlight white LED control via GPIO
 - Support Illumination LED control via GPIO
- **2-D Hardware Acceleration Engine**
 - Enhanced BitBLT

- ROPs
- All-angle (Bresenham) line drawing
- Clip

- **Video Post-processing**
 - Overlay between video and host graphics
 - Alpha-blending between video and host graphics
 - Image rotation (90, 180 and 270 degree)
 - Mirror (horizontal and vertical)
 - Special image effects:
 - Monochrome
 - Sepia
 - Special color
 - Negative
 - Relief
 - Sketch

CONFIDENTIAL

3.Pin Layout

3.1 VC0568 Pin-out Diagram

	1	2	3	4	5	6	7	8	9	10	11	12
A	CONF[2]	LCD_DATA[0]	OVDD8	RSTN	CS_CLK	CS_VSYNC	LCD_RDN	LCD_DATA[14]	LCD_DATA[12]	OVDD7	CPU_ADDR[5]	CPU_A8
B	LCD_DATA[1]	OVSS8	CONF[1]	INT	CS_RSTN	DVSS4	DVDD4	LCD_DATA[13]	CPU_ADDR[7]	CPU_ADDR[6]	CPU_ADDR[4]	CPU_RS
C	CPU_DATA[1]	CPU_DATA[0]									CS_ENB	OVDD6
D	OVDD1	CPU_DATA[2]		CONF[0]	CS_HSYNC	LCD_WRN	LCD_DATA[15]	OVSS7	OVSS6		LCD_RS	CS_PWDN
E	LCD_DATA[2]	CPU_DATA[3]		OVSS1						LCD_RST	CS_SCK	CS_SDA
F	GPIO[1]	GPIO[0]		LCD_DATA[3]						DVSS3	DVDD3	XCLK
G	CPU_WBEN[0]	DVDD1		DVSS1					LCD_DATA[11]		VDDA	VSSA
H	CPU_WEN	CPU_OEN		CPU_WBEN[1]					OVSS5		LCD_DATA[9]	LCD_DATA[10]
J	CS_DATA[6]	CS_DATA[7]		CS_DATA[5]	OVSS3	LCD_DATA[7]	GPIO[4]	LCD_CS1N	OVSS4		LCD_DATA[8]	OVDD5
K	OVDD2	CS_DATA[4]									CPU_ADDR[2]	CPU_ADDR[3]
L	LCD_DATA[4]	OVSS2	CPU_DATA[4]	CPU_DATA[6]	CPU_DATA[7]	DVDD2	GPIO[2]	CPU_CS1N	CPU_CS2N	CS_DATA[2]	CPU_ADDR[0]	CPU_ADDR[1]
M	TEST	LCD_DATA[5]	CPU_DATA[5]	OVDD3	LCD_DATA[6]	DVSS2	GPIO[3]	LCD_CS2N	OVDD4	CS_DATA[3]	CS_DATA[1]	CS_DATA[0]

Figure 3-1 VC0568 fpBGA-100 Pin-out Diagram – Top View

3.2 Pin description

Pin Name	I/O TYPE	Ball Pad	Remark
LCD_DATA[0]	B	A2	Data bus to the LCD panel, bit [0]
LCD_DATA[1]	B	B1	Data bus to the LCD panel, bit [1]
CPU_DATA[0]	B	C2	Data bus between host CPU and VC0568, bit [0]
CPU_DATA[1]	B	C1	Data bus between host CPU and VC0568, bit [1]
OVSS1	G	E4	IO ground
OVDD1	P	D1	IO power
CPU_DATA[2]	B	D2	Data bus between host CPU and VC0568, bit [2]
CPU_DATA[3]	B	E2	Data bus between host CPU and VC0568, bit [3]
LCD_DATA[2]	B	E1	Data bus to the LCD panel, bit [2]
LCD_DATA[3]	B	F4	Data bus to the LCD panel, bit [3]
GPIO[0]	B, PU	F2	Global purpose IO pin, bit [0]
GPIO[1]	B, PU	F1	Global purpose IO pin, bit [1]
DVSS1	G	G4	Core ground
DVDD1	P	G2	Core power
CPU_WBEN[0]	I	G1	Write byte enable, bit 0
CPU_WBEN[1]	I	H4	Write byte enable, bit 1
CPU_WEN	I	H1	Write signal, active low
CPU_OEN	I	H2	Output enable, active low
CS_DATA[7]	B, PD	J2	Video data input from camera module, bit [7]
CS_DATA[6]	B, PD	J1	Video data input from camera module, bit [6]
CS_DATA[5]	B, PD	J4	Video data input from camera module, bit [5]
CS_DATA[4]	B, PD	K2	Video data input from camera module, bit [4]
OVDD2	P	K1	IO power
OVSS2	G	L2	IO ground
TEST	I	M1	Test mode enable
LCD_DATA[4]	B	L1	Data bus to the LCD panel, bit [4]
LCD_DATA[5]	B	M2	Data bus to the LCD panel, bit [5]
CPU_DATA[4]	B	L3	Data bus between host CPU and VC0568, bit [4]
CPU_DATA[5]	B	M3	Data bus between host CPU and VC0568, bit [5]
OVSS3	G	J5	IO ground
OVDD3	P	M4	IO power
CPU_DATA[6]	B	L4	Data bus between host CPU and VC0568, bit

			[6]
CPU_DATA[7]	B,	L5	Data bus between host CPU and VC0568, bit [7]
LCD_DATA[6]	B	M5	Data bus to the LCD panel, bit [6]
LCD_DATA[7]	B	J6	Data bus to the LCD panel, bit [7]
DVSS2	G	M6	Core ground
DVDD2	P	L6	Core power
GPIO[2]	B, PU	L7	Global purpose IO pin, bit [2]
GPIO[3]	B, PU	M7	Global purpose IO pin, bit [3]
GPIO[4]	B, PU	J7	Global purpose IO pin, bit [4]
LCD_CS1N	B	J8	LCD Chip Select for main panel
LCD_CS2N	B	M8	LCD Chip Select for sub panel
CPU_CS1N	I	L8	Chip select 1, active low
CPU_CS2N	I	L9	Chip select 2, active low
OVDD4	P	M9	IO power
OVSS4	G	J9	IO ground
CS_DATA[3]	B, PD	M10	Video data input from camera module, bit [3]
CS_DATA[2]	B, PD	L10	Video data input from camera module, bit [2]
CS_DATA[1]	B, PD	M11	Video data input from camera module, bit [1]
CS_DATA[0]	B, PD	M12	Video data input from camera module, bit [0]
CPU_ADDR[0]	B	L11	Address bus between host CPU and VC0568, bit [0]
CPU_ADDR[1]	B	L12	Address bus between host CPU and VC0568, bit [1]
CPU_ADDR[2]	B	K11	Address bus between host CPU and VC0568, bit [2]
CPU_ADDR[3]	B	K12	Address bus between host CPU and VC0568, bit [3]
OVSS5	G	H9	IO ground
OVDD5	P	J12	IO power
LCD_DATA[8]	B	J11	Data bus between host CPU and VC0568, bit [8]
LCD_DATA[9]	B	H11	Data bus between host CPU and VC0568, bit [9]
LCD_DATA[10]	B	H12	Data bus between host CPU and VC0568, bit [10]
LCD_DATA[11]	B	G9	Data bus between host CPU and VC0568, bit [11]
VDDA	P	G11	PLL power
VSSA	G	G12	PLL ground
DVSS3	G	F9	Core ground
DVDD3	P	F11	Core power
CS_SCK	B	E11	Serial clock for camera module control

CS_SDA	B	E12	Serial data for camera module control
LCD_RST	B	E9	LCD panel reset
LCD_RS	B	D11	LCD Register Select index and command register
CS_PWDN	B	D12	Power down signal of camera module
CS_ENB	B	C11	Camera module enable signal
OVDD6	P	C12	IO power
XCLK	I	F12	Clock from the host CPU or oscillator
OVSS6	G	D9	IO ground
CPU_RS	I, PD	B12	Register select
CPU_A8	I, PD	A12	Address bus / HOST register select
CPU_ADDR[4]	B	B11	Address bus between host CPU and VC0568, bit [4]
CPU_ADDR[5]	B	A11	Address bus between host CPU and VC0568, bit [5]
CPU_ADDR[6]	B	B10	Address bus between host CPU and VC0568, bit [6]
CPU_ADDR[7]	B	B9	Address bus between host CPU and VC0568, bit [7]
OVDD7	P	A10	IO power
OVSS7	G	D8	IO ground
LCD_DATA[12]	B	A9	Data bus between host CPU and VC0568, bit [12]
LCD_DATA[13]	B	B8	Data bus between host CPU and VC0568, bit [13]
LCD_DATA[14]	B	A8	Data bus between host CPU and VC0568, bit [14]
LCD_DATA[15]	B	D7	Data bus between host CPU and VC0568, bit [15]
LCD_WRN	B	D6	LCD Write strobe to be asserted in write operation
LCD_RDN	B	A7	LCD Read strobe to be asserted in read operation
DVDD4	P	B7	Core power
DVSS4	G	B6	Core ground
CS_VSYNC	B, PD	A6	Vertical synchronous signal to/from camera module
CS_HSYNC	B, PD	D5	Horizontal synchronous signal to/from camera module
CS_CLK	B,	A5	Synchronous clock of camera data transfer (max.27MHz)
CS_RSTN	B,	B5	Camera module reset signal
INT	B,	B4	Interrupt to the host CPU

RSTN	I, S	A4	Reset signal, active low
OVDD8	P	A3	IO power
OVSS8	G	B2	IO ground
CONF[0]	I	D4	Configuration pin for CPU bus, bit 0
CONF[1]	I	B3	Configuration pin for CPU bus, bit 1
CONF[2]	I	A1	Configuration pin for CPU bus, bit 2

I = Input

O = Output

B = Bi-directional

P = Power

G = Ground

PD = Pull down

PU = Pull up

S = Schmitt trigger

4. System block diagram

Figure 4-1 shows the system block diagram of a typical camera phone. VC0568 is the bridge between the baseband processor and LCD module, enabling mobile phones to capture and display still images and video clips at real-time. Most of the display and camera functions are conducted by VC0568, which will greatly reduce the burden on host CPU for computation-intensive image and graphics processing.

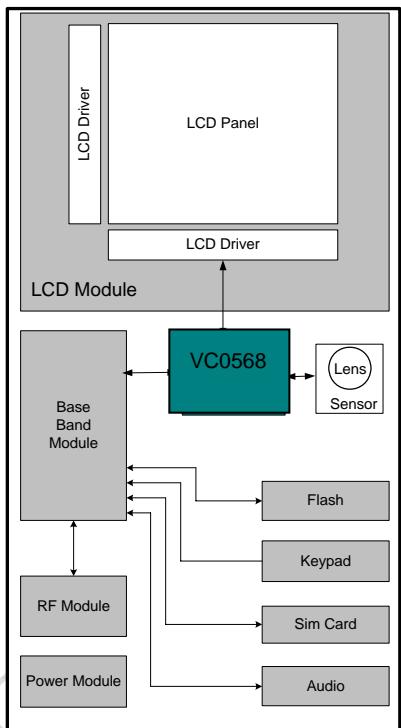


Figure 4-1 VC0568 system block diagram

5. Chip block diagram

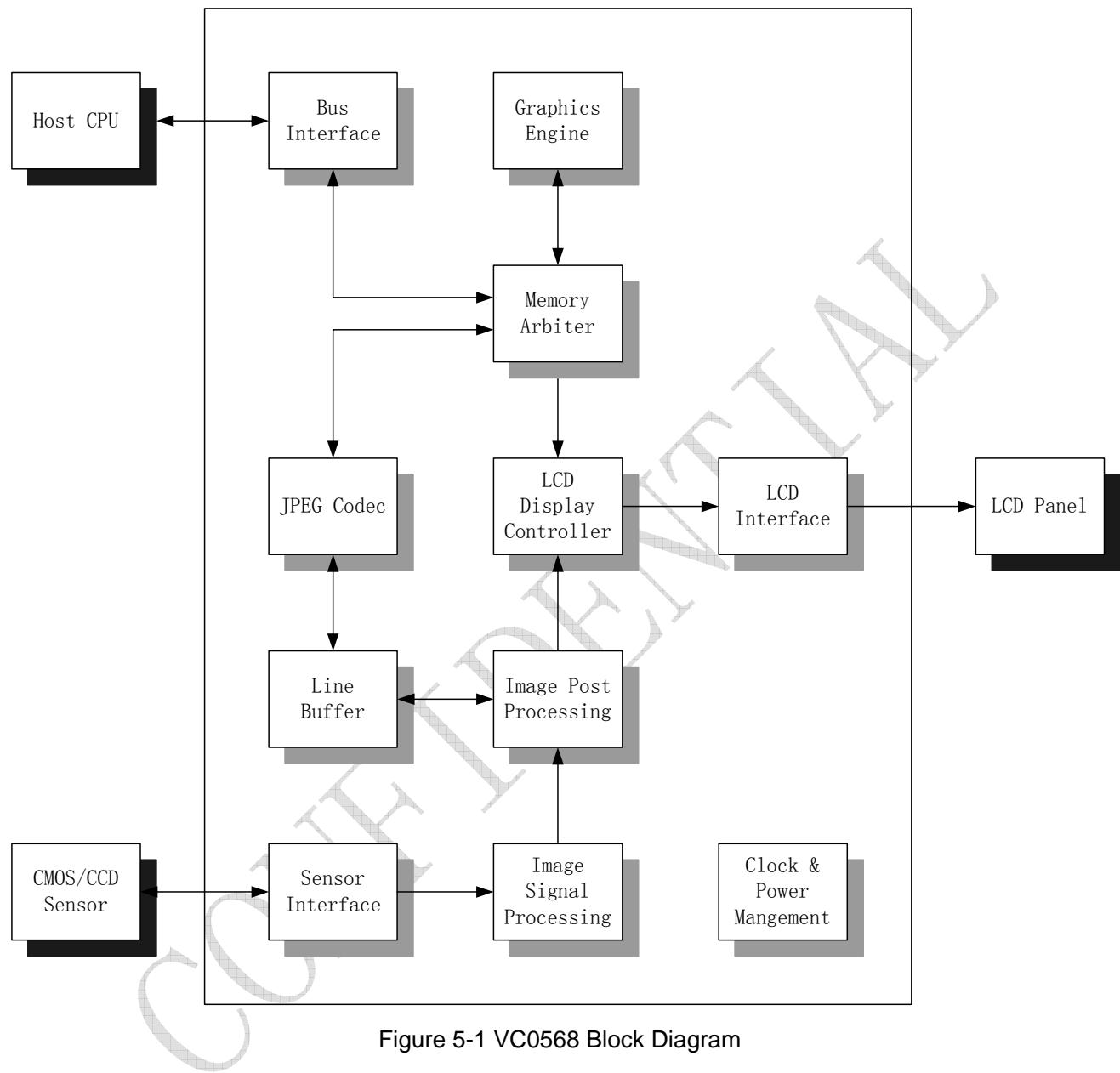


Figure 5-1 VC0568 Block Diagram

The main internal blocks in VC0568 are:

- **Sensor interface (SIF)**

The image data of the YUV422 format or Bayer pattern is captured synchronously. The sensor clock is generated by VC0568 and it can be adjusted according to the requirement with the maximum 27 MHz, and the pixel rate can up to 13.5M. The maximum resolution from the sensor is 1.3Mega pixel. Serial bus interface is supported for controlling the sensor.

- **Image signal processing (ISP)**

If the image data from the sensor is in RGB Bayer format, the ISP unit is used to convert it into YUV422 format. The ISP unit includes CFA-interpolation, noise reduction, sharpness enhancement, color correction, gamma correction, etc.

- **Image post processing (IPP)**

This module is used to add some special effects on the image for capture and display, such as relief, sepia, color range, negative, etc. The resolution of the input image from the sensor or host CPU may be not suit for display or capture, so we should convert it to appropriate size according to the screen display size or the capture resolution initialized by the user.

- **LCD display controller (LCDC)**

This module generates the correct data for LCD panel to display. Alpha blending and overlay function between video and graphics from host CPU are supported. Rotation (90, 180 and 270 degree), mirror (horizontal and vertical) and gamma correction on video plane are all supported in this module.

- **LCD panel interface (LCDIF)**

VC0568 supports TFT and STN-type LCD panels up to CIF resolution (352x288). It communicates with the LCD panel through standard asynchronous 8/16 bit data bus with the color depth of 4/8/12/16/18 bit per pixel. Direct interface between host CPU and LCD panel is also supported.

- **JPEG codec (JPEG)**

VC0568 has an embedded JPEG codec for both image compression and decompression. The input of the encoder comes from either the sensor or the host CPU under different working modes, and the output of the encoder is saved in on-chip SRAM for host CPU to read. The input of the decoder is from the on-chip SRAM which can be accessed by the host CPU and the decompressed data is sent back to host CPU or LCD display. The JPEG CODEC supports YUV422, YUV411, YUV420, YUV400 data format.

- **Memory Arbiter (MARB)**

The built-in 384KByte SRAM is used for storing the JPEG image data and graphics data. The size and position of graphics buffer and JPEG buffer can be configured dynamically. Some modules, such as JPEG, BIU, GE, STO, LCDC and IPP will address the on-chip SRAM. The memory arbiter will arrange the request from these modules and then response correctly.

- **Line buffer (LBUF)**

Two sets of 8-line buffer (1280x8x2 Bytes) are built in VC0568 for converting the data from line sequence to block sequence in capture mode and from block sequence to line sequence in display mode and decoder mode. The line buffer unit controls data read/write access to 8-Line Buffer. The two sets of 8-line buffer is configured as ping-pang architecture in capture and display modes. In decoder mode, one set is used as the FIFO to change

block sequence to line sequence and the other is used for data storage after resizing.

- **Bus interface (BIU)**

The host CPU can read/write the control registers and on-chip SRAM of VC0568 via host interface unit. VC0568 supports most popular CPUs such as ARM, XScale, and other 60/80-series CPUs. The data bus is 8bit/16bit (synchronous or asynchronous). The internal control bus is AMBA.

- **Graphics Engine (GE)**

VC0568 comes with a powerful graphics engine along with on-chip graphics buffer for 2D graphics acceleration operations such as BitBLT, ROPs, and line drawing. The on-chip SRAM is used as the display memory. The input to the graphics engine either comes from the host CPU or the display memory. With the built-in graphics engine, the host CPU is freed from most of the display function.

- **System Controller (CPM, including clock, reset and power management)**

VC0568 has a variety of power management mechanisms to reduce power consumption. The internal clock can be stopped or modified by the clock control registers, and the internal PLL oscillation may be stopped under PLL bypass mode (note that the performance depends on the input clock frequency in PLL bypass mode). Also, the gated clock function stops the clock of non-operation block automatically. This unit also controls the action of the on-chip analog phase-locked-loop (PLL).

6. Chip Configuration

The CONF pin is used to configure the chip and should be connected to the VSS or VDD before chip reset.

Configuration input	Description
CONF[2:0]	<p>Host bus interface type</p> <p>“000” : type 0; “001” : type 1; “010” : type 2; “011” : type 3; “100” : type 4; “101” : type 5; “110” : type 6; “111” : type 7;</p>

For different bus type, the host interface pin can have different mapping, which can be seen in the following table.

Pin name	Type0	Type1	Type2	Type3	Type4	Type5	Type6	Type7
ADDR [7:0]	DATA [15:8]	DATA [15:8]	DATA [15:8]	DATA [15:8]	ADDR [7:0]	ADDR [7:0]	ADDR [7:0]	ADDR [7:0]
CPU_A8	A1	A1	A1	A1	CPU_A8	CPU_A8	CPU_A8	CPU_A8
CPU_RS	Low	Low	Low	Low	CPU_RS	CPU_RS	CPU_RS	CPU_RS
DATA [7:0]	DATA [7:0]	DATA [7:0]	DATA [7:0]	DATA [7:0]	DATA [7:0]	DATA [7:0]	DATA [7:0]	DATA [7:0]
CSN	CS#	CS#	CS#	CS#	CS#	CS#	CS#	CS#
RDN	RD#	RD#	RDL#	high	RD#	RD#	RDL#	high
WEN	WR#	high	WRL#	R/W#	WR#	high	WRL#	R/W#
BEN[1]	UBE#	WRU#	RDU#	UDS#	UBE#	WRU#	RDU#	UDS#
BEN[0]	LBE#	WRL#	WRU#	LDS#	LBE#	WRL#	WRU#	LDS#

A1: address/data select pin

RDL#: read data low byte enable

RDU#: read data high byte enable

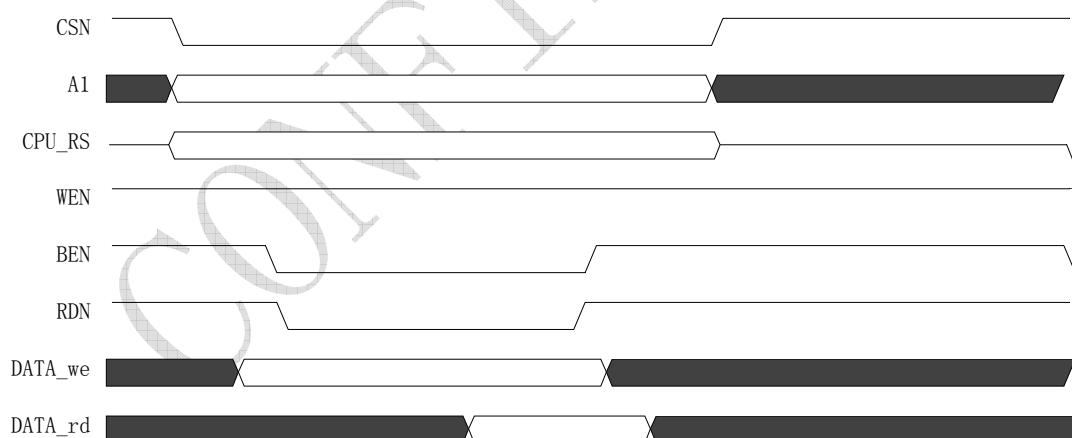
WRL#: write data low byte enable

WRU#: write data high byte enable

R/W#: CPU write/read signal (68 type)

UBE#: upper byte enables

LBE#: low byte enables

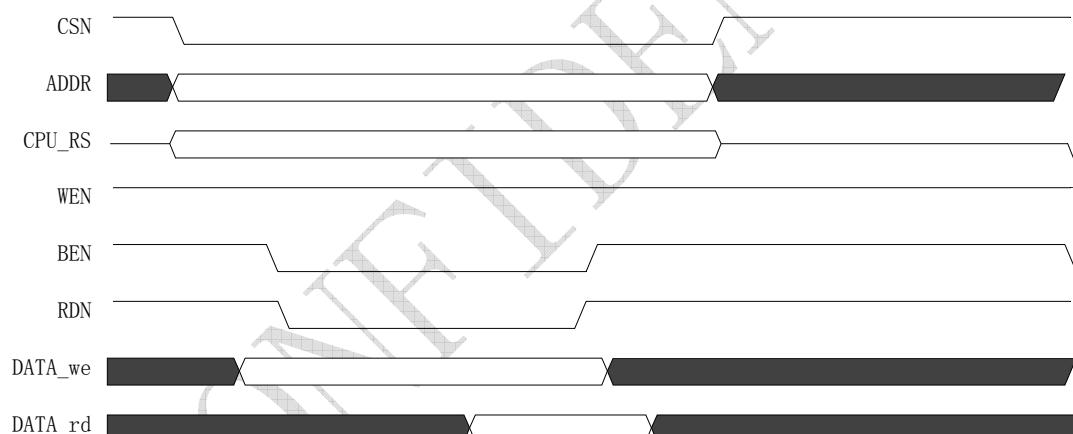

LDS#: low data select pin

UDS#: upper data select pin

6.1 Multiplex 80 Type0

6.2 Multiplex 80 Type1

6.3 Multiplex 80 Type2


6.4 Multiplex 68 Type3

6.5 Separate Page 80 Type4

6.6 Separate Page 80 Type5

6.7 Separate Page 80 Type6

6.8 Separate Page 68 Type7

7. Operation Mode

The following operation modes are supported in VC0568 accompanied with Camera module and LCD panel:

7.1 Viewfinder Mode

In viewfinder mode, continuous video stream (up to 30fps) from sensor is shown on LCD panel with no frame delay. The user can adjust the zooming factor and image of different resolution will be displayed on LCD. When the user is happy with the image frame on display, he or she can push a button and capture it. Then the chip will go to the capture mode.

In viewfinder mode, the following features are supported:

- Video streaming at high frame rate (up to 30fps)
- No frame delay (What you see is what you capture!)
- Zoom in/out
- Add frame on the video
- Configurable display window

7.2 Capture Mode

VC0568 can capture still image, multi-shot and video clip.

When capture still image, the user first chose an appropriate frame in viewfinder mode, then he can press a capture button and the next frame from the image sensor will be captured. The JPEG compression image is stored in the internal SRAM and the host CPU can read the data. The user can choose the image size to be captured and whether there is a 'frame' outside the captured image or not. VC0568 have on-chip buffer for capturing high-quality still image up to 1.3M pixels in JPEG format. Thumbnail with configurable size can be generated accompanied with the JPEG image data.

When capture multi-shot, the user first push the capture button, then VC0568 will capture consecutive TBD images at TBD internal from image sensor. The images will be resized to VGA size and compressed as JPEG files along with a thumbnail version, and stored in on-chip buffer. Each image will be assigned a unique number internally for reference. The thumbnail images will be sent to LCD for display side by side. When user selects one of the thumbnail images, the corresponding VGA sized image will be sent to LCD for display at right size and bit depth. 2-D graphics functions (including special image effect) are supported in capture mode.

After the user pushes the capture button, VC0568 will capture the video stream from image sensor, until he/she pushes the stop button. The video stream will be compressed as AVI file, and then sent to baseband processor. At the same time, video frames of right size and bit-depth will be sent to LCD for display. 2-D graphics functions (including special image effect) are supported in capture mode. VC0568 will allow user to capture video in two resolutions: 320 x 240 and 160 x 120.

The captured still image, multi-shot and video clip can be sent to the host CPU or the storage card.

In capture mode, the following features are supported

- Capture still images up to 1.3Mega resolution
- Capture SIF (320x240), QSIF (160x120) and QQSIF (80x60) MJPEG video clip
- Capture still image with various resolution of thumbnail
- Capture still image with overlay
- Capture still image with alpha-blending
- Capture multi-shot up to VGA resolution

7.3 Display Mode

Under display mode, JPEG image or AVI saved in host memory or the storage card will be downloaded to VC0568, where it will be prepared (right size and bit depth) for LCD display. 2-D graphics functions are supported in capture mode.

In display mode, the following features are supported:

- Receive JPEG still image or MJPEG video clip from host CPU
- Decode and display on LCD with right size and color depth
- Support various image format: 4:4:4, 4:2:2, 4:1:1, 4:2:0
- Support JPEG image up to VGA resolution
- Resize the image with anti-aliasing pre-filtering
- Add frame to the image
- Add special effect to the image

7.4 JPEG decode mode

It is possible to use VC0568 as a JPEG decoding engine. When it is used as a JPEG decoder, the JPEG data is written to internal SRAM similar to the display mode and then decompressed by JPEG codec. But the decompressed data is sent back to the host CPU, other than LCD panel. The decoding result (YUV444/YUV422/YUV411/YUV420) is written in 8-line buffer. When data of 8 lines (YUV422/YUV411/YUV444) or 16 lines (YUV420) is decompressed, an interrupt is issued and the host CPU will read the data. Then the host

CPU will restart the decompression. Then 'Interruption-read-restart' repeats until decompression of one frame complete.

In JPEG decoder mode, the following features are supported:

- Receive JPEG image from host CPU
- Decode the JPEG image to YUV image data
- Add optional special effect to the image
- Resize the image data to specific resolution
- Send the YUV image data back to host CPU
- Support 4:4:4, 4:2:2, 4:1:1, 4:2:0
- Support JPEG image up to 1.3M resolution

7.5 JPEG Encode Mode

VC0568 can also be used as a JPEG encoder. At this mode, image data can be encoded into JPEG format by writing the image data in the specific registers one by one. Data of YUV422/YUV411/YUV420/YUV400 is written to the register in block sequence (8x8). The compressed JPEG data is saved in the internal SRAM and then is read by the host CPU after one frame is completed.

In JPEG encoder mode, the following features are supported:

- Receive YUV image data from host CPU
- Encode the image to JPEG format
- Send the JPEG image back to host CPU
- Support 4:2:2, 4:1:1, 4:2:0
- Support JPEG image up to 1.3M resolution

7.6 Through Mode

In this mode, the camera functions are disabled. The host CPU will read/write the LCD module directly. VC0568 support two ways for interfacing LCD panel in this mode: i) through registers for forwarding the index and the data to the LCD panel. Conversion from 8bit to 16bit of can be supported; ii) directly mapping the data and address from host CPU to LCD panel and there is no registers between host CPU and LCD panel, just like the host CPU interface LCD panel directly.

In through mode, the following features are supported:

- Video function is disabled
- Host CPU update LCD panel directly
- Directly pin mapping between host CPU and LCD module
- Index register for address and data for host CPU to update LCD
- Low power

7.7 Direct Display Mode

In this mode, the camera functions are disabled. The host CPU will writes the graphics data to the LCD panel through the on-chip graphics SRAM. 2-D graphics engine is supported at this mode. Direct data (16bpp, 24bpp and 32bpp) and indirect data (4 and 8bpp) are supported to write to the SRAM. For indirect data, a color palette table is used for converting to 16-bit direct color data.

In direct display mode, the following features are supported:

- o Video function is disabled
- o Host CPU reads/writes the frame buffer
- o Optional BitBLT operation
- o Optional 256 Raster operation
- o Optional all angels line draw

8. Electrical Characteristics

8.1 Absolute Maximum Ratings

Permanent device damage may occur if absolute maximum ratings are exceeded, hence the maximum ratings must never be exceeded. Functional operation should be restricted to the conditions as detailed in recommended operating conditions. Exposure to the absolute maximum conditions for extended periods may affect device reliability.

PARAMETER	SYMBOL	MIN	MAX	UNIT
Input voltage	V_I	-0.5	4.6	V
Output voltage	V_O	-0.5	4.6	V
Pre-driver power supply voltage	-	-0.5	2.5	V
Post-driver power supply voltage	-	-0.5	4.6	V
Operation temperature	T_{OPT}	-40	125	°C
Storage temperature	T_{STG}	-65	150	°C

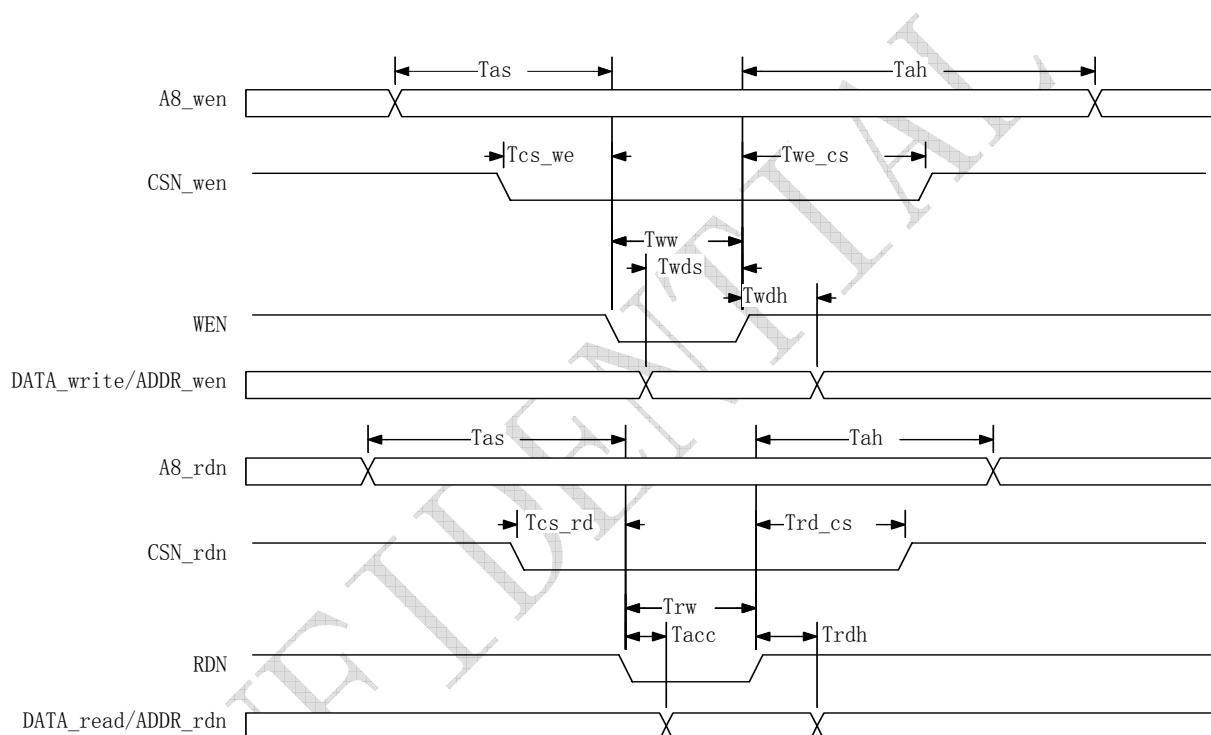
8.2 Recommended Operating Conditions for 3.3V IO Application

The recommended operating conditions are the recommended values for assuring normal logic operation. As long as the device is used within the recommended operating conditions, the electrical characteristics (DC and AC characteristics) described below are assured.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Pre-driver supply voltage	VDD	1.62	1.8	1.98	V
I/O supply voltage	VDD33	2.6	3.3	3.63	V
Input high voltage	V _{IH}	2.0	-	3.6	V
Input low voltage	V _{IL}	-0.3	-	0.8	V
Threshold point	V _T	1.46	1.59	1.75	V
Schmitt trig low to high threshold point	V _{T+}	1.44	1.50	1.56	V
Schmitt trig high to low threshold point	V _{T-}	0.88	0.94	0.99	V
Junction temperature	T _J	0	25	125	°C
Input leakage current	I _L	-	-	±10	uA
Tri-state output leakage current	I _{OZ}	-	-	±10	uA
Pull-up resistor	R _{PU}	50	65	100	Kohm
Pull-down resistor	R _{PD}	40	56	107	Kohm
Output low voltage @ I _{OL} =4mA	V _{OL}	-	-	0.4	V
Output high voltage @ I _{OH} =4mA	V _{OH}	2.4	-	-	V
Low level output current @ V _{OL} =0.4V	I _{OL}	4.4	7.4	9.2	mA
High level output current @ V _{OH} =2.4V	I _{OH}	5.0	10.2	15.0	mA

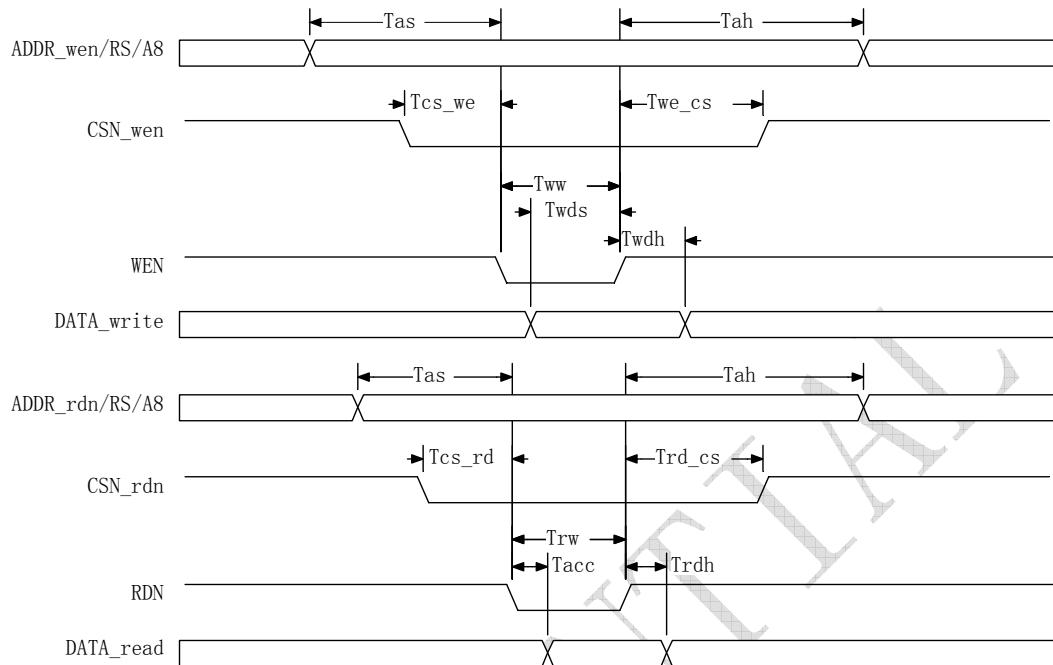
*The value of the supply voltage is the typical case.

8.3 Working Current

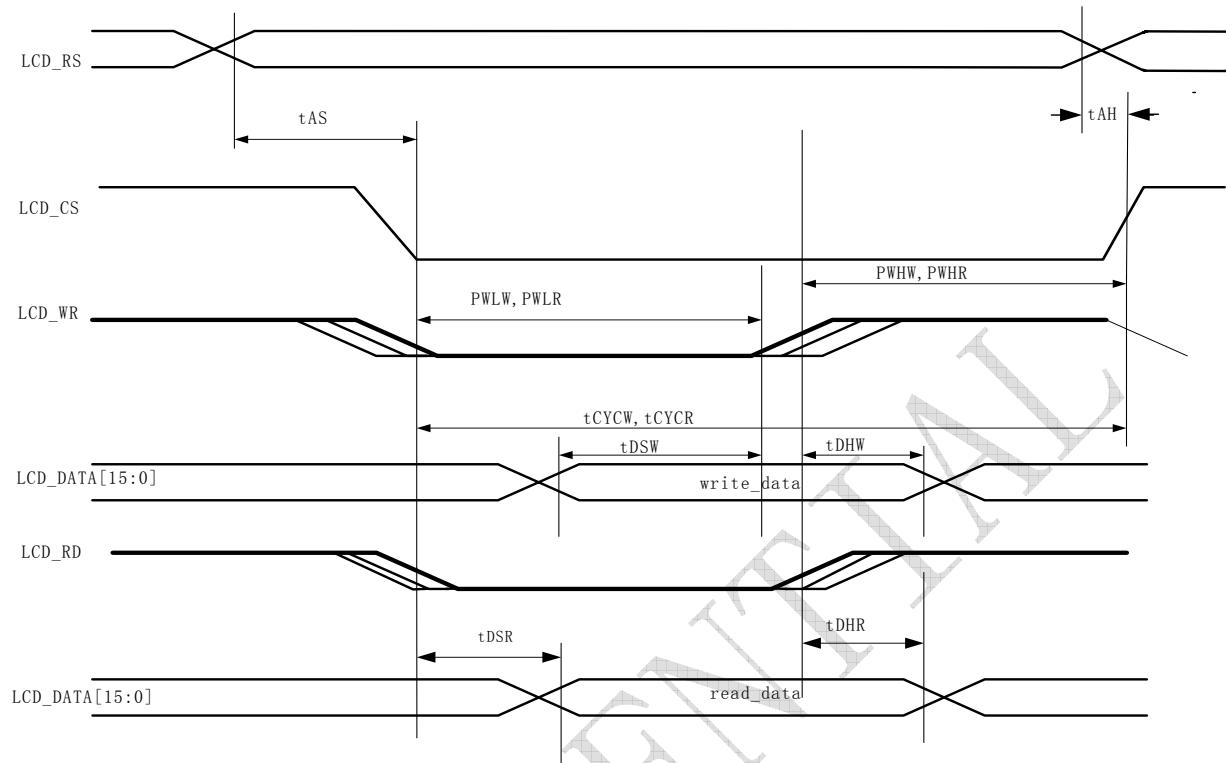

Current Mode style	3.3V_IO (mA)	1.8V (mA)			P (mW)
		CORE	PLL	SUM	
Viewfinder Mode	2.8	17.94	5.836	23.776	52.04
Capture Mode	2.83	22.15	5.826	27.976	59.70
Display Mode	2.85	10.179	5.832	16.011	38.22
Bypass Mode	0.173	0.041	0.003	0.044	0.39

8.4 AC Characteristics

This section describes the VC0568 AC characteristics, which consist of output delays, input setup and hold times and all the interface timing.

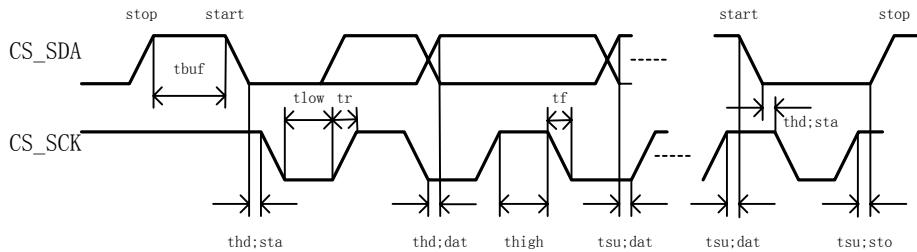

8.4.1 Host interface

8.4.1.1 Multiplex interface characteristics


Item	symbol	Min	Typical	Max	Unit
Address setup time	Tas	0			ns
Address hold time	Tah	13.8	20		ns
Cs setup time at write status	Tcs_we	0			ns
Cs hold time at write status	Twe_cs	0			ns
Data setup time	Twds	12.2	24		ns
Data hold time	Twdh	8.8	10		ns
Write width	Tww	120			ns
Cs setup time at read status	Tcs_rd	0			ns
Cs hold time at read status	Trd_cs	0			ns
Read data access time	Tacc	120			ns
Read width	Trw	120			ns
Data hold time	Trdh	2.5			ns

8.4.1.2 Separate page interface characteristics

Item	symbol	Min	Typical	Max	Unit
Address setup time	Tas	0			ns
Address hold time	Tah	13.8	20		ns
Cs setup time at write status	Tcs_we	0			ns
Cs hold time at write status	Twe_cs	0			ns
Data setup time	Twds	12.2	24		ns
Data hold time	Twdh	8.8	10		ns
Write width	Tww	120			ns
Cs setup time at read status	Tcs_rd	0			ns
Cs hold time at read status	Trd_cs	0			ns
Read data access time	Tacc	120			ns
Read width	Trw	120			ns
Data hold time	Trdh	2.5			ns


8.4.2 LCD panel interface

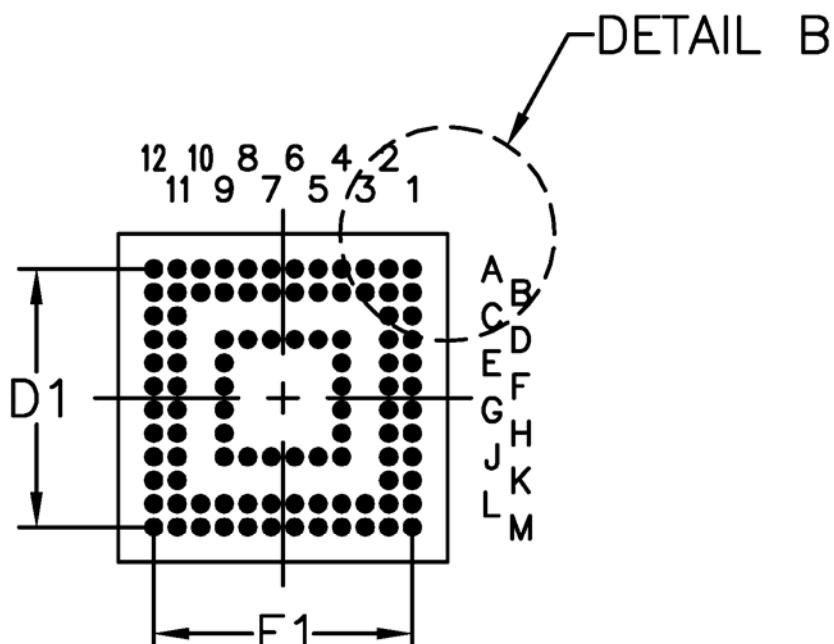
Parameter	Symbol	Min	Max	Unit
Bus cycle time	t _{CYCW}	2		cycle *
	t _{CYCR}	2		cycle
Write low-level pulse width	PW _{LW}	1		cycle
Read low-level pulse width	PW _{LR}	1		cycle
Write high-level pulse width	PW _{HW}	1		cycle
Read high-level pulse width	PW _{HR}	1		cycle
Setup time (LCD_RS to LCD_CS, LCD_WRN, LCD_RDN)	t _{AS}	0		ns
Hold time (LCD_RS to LCD_CS)	t _{AH}	0		ns
Write data setup time	t _{DSW}	1		cycle
Write data hold time	t _{DHW}	1		cycle
Read data setup time	t _{DSR}	0		ns
Read data hold time	t _{DHR}	0		ns

* The cycle width is according to the VC0568 system clock period

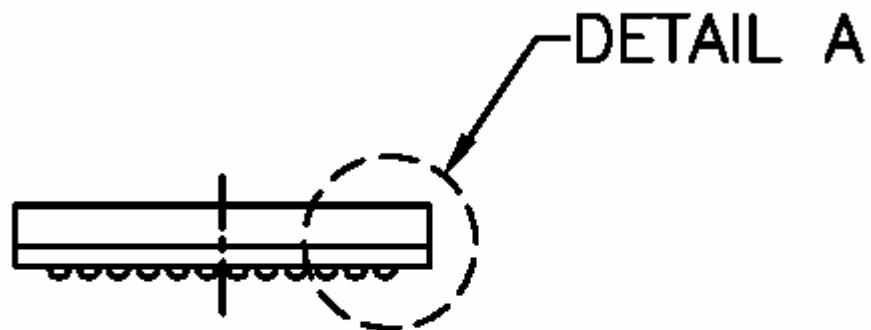
8.4.3 Sensor Interface

Parameter	Symbol	Min	Max	Unit
CS_SCK clock frequency	f_{sck}	0	375	kHz
Time that sensor serial bus must be free before a new transmission can start	t_{buf}	1.3	-	us
Hold time for a start	$t_{hd:sta}$	0.6	-	us
Low period of CS_SCK	t_{low}	1.3	-	us
High period of CS_SCK	t_{high}	1.3	-	us
Setup time for start	$t_{su:sta}$	0.6	-	us
Data hold time	$t_{hd:dat}$	0	-	us
Data setup time	$t_{su:dat}$	100	-	ns
Rise time of both CS_SDA and CS_SCK	t_r	-	1	us
Fall time of both CS_SDA and CS_SCK	t_f	-	300	ns
Setup time for stop	$t_{su:sto}$	0.6	-	us

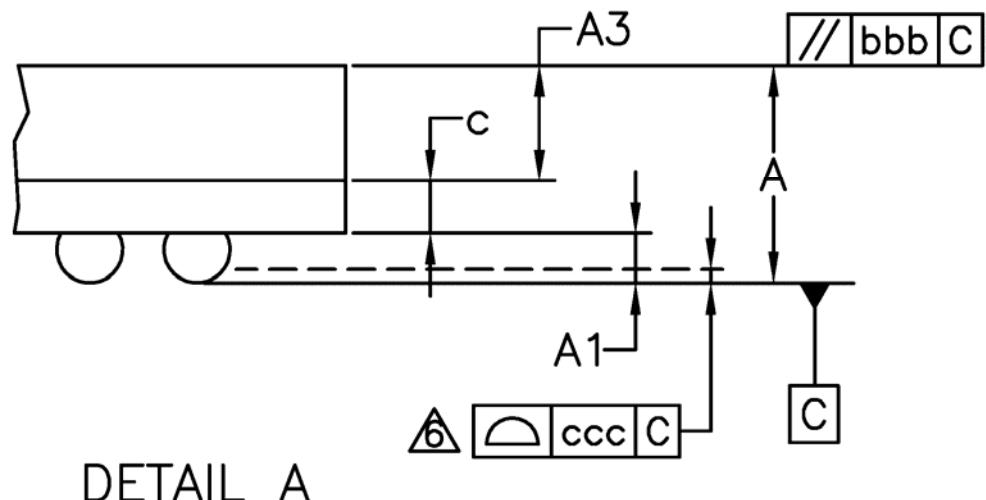
Because this chip don't use PCLK from sensor to sample sensor's synchronous signal and data, the output from sensor must be generate in same clock domain and have same setup and hold timing requirement.


9. Mechanical dimensions

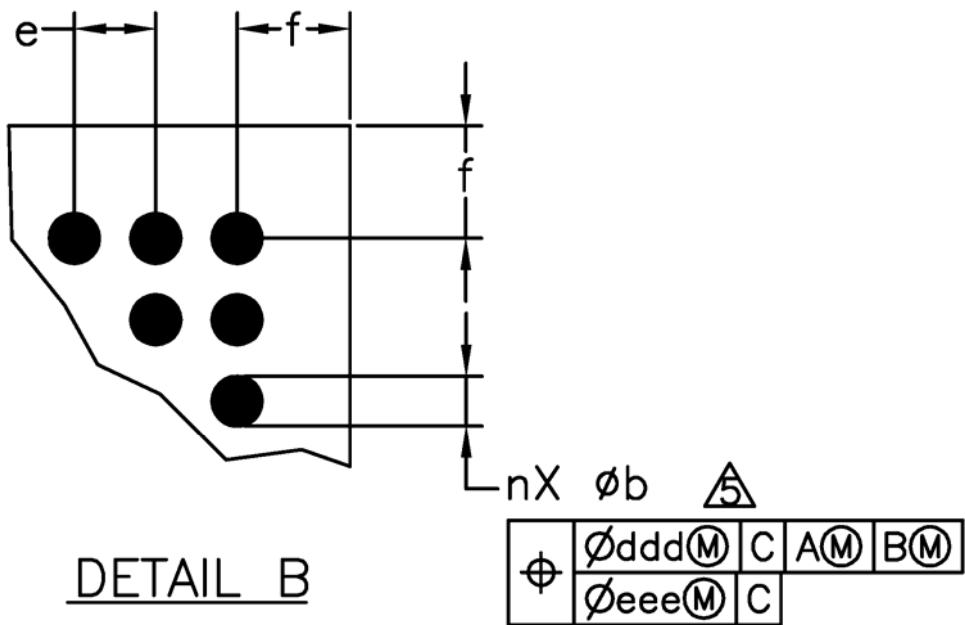
9.1 Top View


TOP VIEW

9.2 Bottom View


BOTTOM VIEW

9.3 Side view



SIDE VIEW

9.4 Delta A

9.5 Delta B

CONFIDENTIAL

9.6 Dimensional Reference

DIMENSIONAL REFERENCES			
REF.	MIN.	NOM.	MAX.
A	0.94	1.09	1.24
A1	0.17	0.22	0.27
A3	0.50	0.55	0.60
D	6.80	7.00	7.20
D1	6.60 BSC.		
E	6.80	7.00	7.20
E1	6.60 BSC.		
b	0.25	0.30	0.35
bbb			0.20
a	0.27	0.32	0.37
ccc	0.08		
ddd			0.15
eee			0.05
e	0.50 BSC.		
f	0.65	0.75	0.85
M	12		
N	100		

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5-1994.
2. ALL DIMENSIONS ARE IN MILLIMETERS.
3. THE "a" REPRESENTS THE SOLDER BALL GRID PITCH.
4. "M" REPRESENTS THE BASIC SOLDER BALL MATRIX SIZE AND SYMBOL "N" IS THE ACTUAL NUMBER OF BALLS AFTER DEPOPULATING.
5. DIMENSION "b" IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.
6. PRIMARY DATUM C IS DEFINED BY THE CROWNS OF THE SOLDER BALLS.
7. PACKAGE SURFACE SHALL BE MATTE FINISH CHARMILLES 24 TO 27.
8. SUBSTRATE MATERIAL BASE IS BT RESIN.
9. THE OUTLINE DRAWING IS REFER TO JEDEC SPEC. MO-207 ISSUE G.
10. BALL MATRIX VARIATIONS CM-1.
11. FOR QUALIFICATION PURPOSE ONLY

9.7 Marking information

Marking Information	Vimicro VC0568-V33 100BGA-AR
---------------------	--

10. Revision History

Revision History			
Version No.	Content of Revision	Corrector	Release Time
1.2	1.Update some register definition, 2.sensor data width: 8bit lcd data width: 16bit 3.add marking information	LiuJian	4-12-2005

11. Contact Information

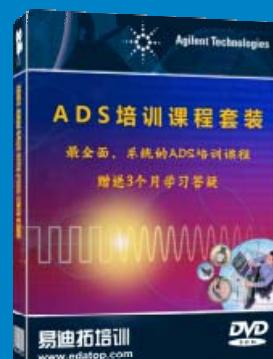
Vimicro Corporation
15/F Shining Tower
No.35 Xueyuan Road
Haidian District, Beijing
P. R. China 100083
Tel: 86-10-68948888
Fax: 86-10-68944075
Web: <http://www.vimicro.com>

Vimicro Corporation – USA
1758 N. Shoreline
Mountain View, CA 94043
Tel: 1-650-966-1882
Fax: 1-650-966-1885

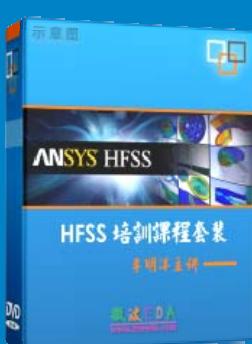
射 频 和 天 线 设 计 培 训 课 程 推 荐

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立，致力并专注于微波、射频、天线设计研发人才的培养；我们于 2006 年整合合并微波 EDA 网(www.mweda.com)，现已发展成为国内最大的微波射频和天线设计人才培养基地，成功推出多套微波射频以及天线设计经典培训课程和 ADS、HFSS 等专业软件使用培训课程，广受客户好评；并先后与人民邮电出版社、电子工业出版社合作出版了多本专业图书，帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、研通高频、埃威航电、国人通信等多家国内知名公司，以及台湾工业技术研究院、永业科技、全一电子等多家台湾地区企业。

易迪拓培训课程列表：<http://www.edatop.com/peixun/rfe/129.html>


射频工程师养成培训课程套装

该套装精选了射频专业基础培训课程、射频仿真设计培训课程和射频电路测量培训课程三个类别共 30 门视频培训课程和 3 本图书教材；旨在引领学员全面学习一个射频工程师需要熟悉、理解和掌握的专业知识和研发设计能力。通过套装的学习，能够让学员完全达到和胜任一个合格的射频工程师的要求…


课程网址：<http://www.edatop.com/peixun/rfe/110.html>

ADS 学习培训课程套装

该套装是迄今国内最全面、最权威的 ADS 培训教程，共包含 10 门 ADS 学习培训课程。课程是由具有多年 ADS 使用经验的微波射频与通信系统设计领域资深专家讲解，并多结合设计实例，由浅入深、详细而又全面地讲解了 ADS 在微波射频电路设计、通信系统设计和电磁仿真设计方面的内容。能让您在最短的时间内学会使用 ADS，迅速提升个人技术能力，把 ADS 真正应用到实际研发工作中去，成为 ADS 设计专家…

课程网址：<http://www.edatop.com/peixun/ads/13.html>

HFSS 学习培训课程套装

该套课程套装包含了本站全部 HFSS 培训课程，是迄今国内最全面、最专业的 HFSS 培训教程套装，可以帮助您从零开始，全面深入学习 HFSS 的各项功能和在多个方面的工程应用。购买套装，更可超值赠送 3 个月免费学习答疑，随时解答您学习过程中遇到的棘手问题，让您的 HFSS 学习更加轻松顺畅…

课程网址：<http://www.edatop.com/peixun/hfss/11.html>

CST 学习培训课程套装

该培训套装由易迪拓培训联合微波 EDA 网共同推出, 是最全面、系统、专业的 CST 微波工作室培训课程套装, 所有课程都由经验丰富的专家授课, 视频教学, 可以帮助您从零开始, 全面系统地学习 CST 微波工作的各项功能及其在微波射频、天线设计等领域的设计应用。且购买该套装, 还可超值赠送 3 个月免费学习答疑…

课程网址: <http://www.edatop.com/peixun/cst/24.html>

HFSS 天线设计培训课程套装

套装包含 6 门视频课程和 1 本图书, 课程从基础讲起, 内容由浅入深, 理论介绍和实际操作讲解相结合, 全面系统的讲解了 HFSS 天线设计的全过程。是国内最全面、最专业的 HFSS 天线设计课程, 可以帮助您快速学习掌握如何使用 HFSS 设计天线, 让天线设计不再难…

课程网址: <http://www.edatop.com/peixun/hfss/122.html>

13.56MHz NFC/RFID 线圈天线设计培训课程套装

套装包含 4 门视频培训课程, 培训将 13.56MHz 线圈天线设计原理和仿真设计实践相结合, 全面系统地讲解了 13.56MHz 线圈天线的工作原理、设计方法、设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体操作, 同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试。通过该套课程的学习, 可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹配电路的原理、设计和调试…

详情浏览: <http://www.edatop.com/peixun/antenna/116.html>

我们的课程优势:

- ※ 成立于 2004 年, 10 多年丰富的行业经验,
- ※ 一直致力并专注于微波射频和天线设计工程师的培养, 更了解该行业对人才的要求
- ※ 经验丰富的一线资深工程师讲授, 结合实际工程案例, 直观、实用、易学

联系我们:

- ※ 易迪拓培训官网: <http://www.edatop.com>
- ※ 微波 EDA 网: <http://www.mweda.com>
- ※ 官方淘宝店: <http://shop36920890.taobao.com>