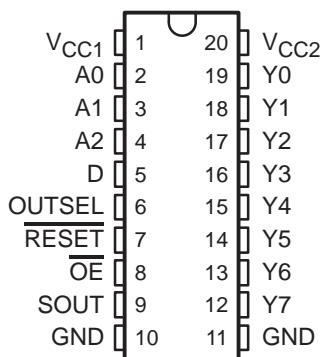


DESCRIPTION


The SN74LV8153 is a serial-to-parallel data converter. It accepts serial input data and outputs 8-bit parallel data.

The automatic data-rate detection feature of the SN74LV8153 eliminates the need for an external oscillator and helps with cost and board real-estate savings.

The OUTSEL pin is used to choose between open collector and push-pull outputs. The open-collector option is suitable when this device is used in applications such as LED interface, where high drive current is required. SOUT is the output that acknowledges reception of the serial data.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC1} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

**N OR PW PACKAGE
(TOP VIEW)**

**FUNCTION TABLE
(each buffer)**

INPUTS				OUTPUT Y _n	OUTPUT STRUCTURE
OUTSEL	RESET	OE	D _n		
L	H	L	H	L	Open collector
L	H	L	L		
L	X	H	X		
L	L	X	X		
H	H	L	H	H	Push-pull
	H	L	L		
	X	H	X		
	L	L	X		

In the open-collector mode (OUTSEL = L), the outputs are inverted, e.g., Y1 = I, when D1 = H

FEATURES

- Single-Wire Serial Data Input
- Compatible With UART Serial-Data Format
- Up to Eight Devices (64-Bit Parallel) Can Share the Same Bus by Using Different Combinations of A0, A1, A2
- Up to 40 mA Current Drive in Open-Collector Mode for Driving LEDs
- Outputs Can be Configured as Open-Collector or Push-Pull
- Internal Oscillator and Counter for Automatic Data-Rate Detection
- Output Levels Are Referenced to V_{CC2} and Can Be Configured From 3 V to 12 V
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 1000-V Charged-Device Model (C101)

SUMMARY OF RECOMMENDED OPERATING CONDITIONS

PARAMETER	
V_{CC1}	3 V to 5.5 V
V_{CC2}	3 V to 13.2 V
I_{OL}	40 mA @ $V_{CC2} = 4.5$ V (open-collector mode)
I_{OH}	-24 mA @ $V_{CC2} = 12$ V (push-pull mode)
Maximum Data Rate	24 Kbps

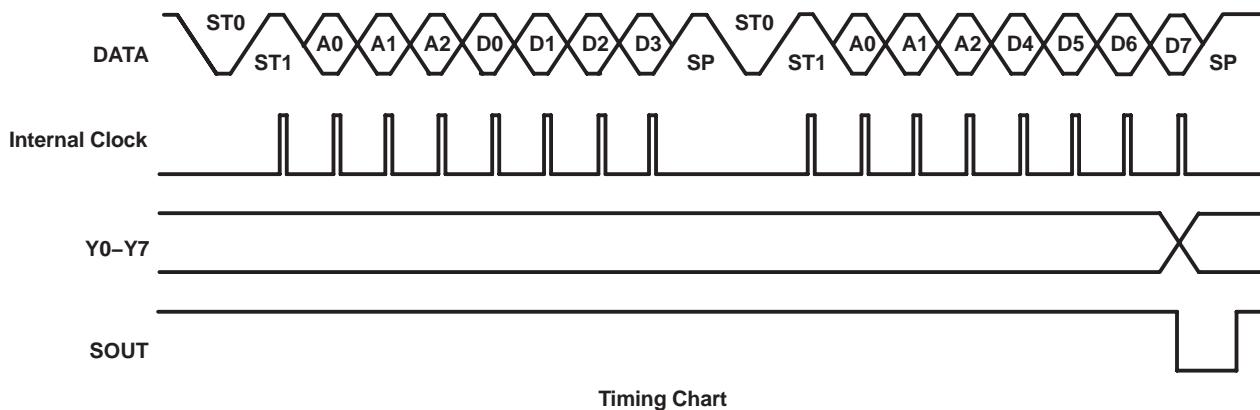
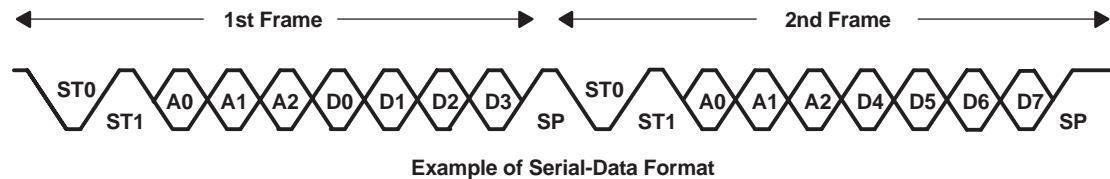
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SN74LV8153 SERIAL-TO-PARALLEL INTERFACE

SCLS555 – JUNE 2004

ORDERING INFORMATION

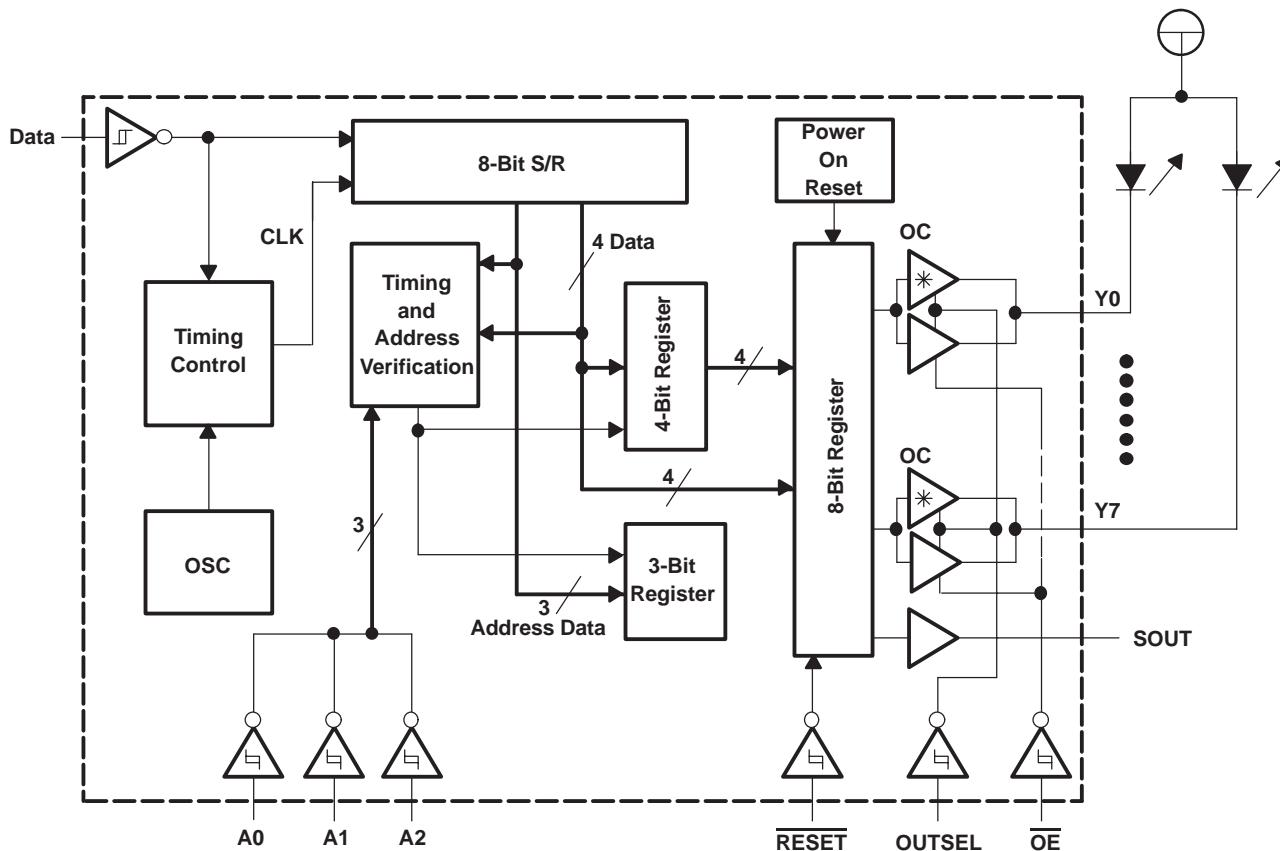
TA	PACKAGE(1)		ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	PDIP – N	Tube	SN74LV8153N	SN74LV8153N
	TSSOP – PW	Tube	SN74LV8153PW	LV8153
		Tape and reel	SN74LV8153PWR	



(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

PIN DESCRIPTION

PIN #	PIN NAME	I/O	PIN FUNCTION
1	V _{CC1}		Power-supply pin (all inputs and outputs except for Y0-Y7)
2-4	A0, A1, A2	In	The address pins are used to program the address of the device and allow up to eight devices to share the same bus.
5	D	In	Serial data input
6	OUTSEL	In	Choose between open-collector and push-pull type outputs (Y0-Y7).
7	RESET	In	Initialize register status
8	OE	In	Force Y0-Y7 to Hi-Z
9	SOUT	Out	Outputs a pulse when latch data is changed. Supplied by V _{CC1} .
12-19	Y0-Y7	Out	Push-pull or open collector parallel data outputs. Supplied by V _{CC2} .
20	V _{CC2}		Power-supply pin for outputs (Y0-Y7). V _{CC2} can range from 3 V to 13.2 V.

data transmission protocol


- The serial data should be sent as 2START-3ADDRESS-4DATA-1STOP. Two consecutive serial-data frames transmit 8 bits of data. The first frame includes the lower four bits of data (D0-D3), and the second frame includes the upper four bits (D4-D7).
- The three address bits (in the consecutive frame) must be the same as those in the first frame; otherwise, the data will be dropped.
- The order of the two start bits must be 0, then 1 in any frame; otherwise, the data rate will not be detected correctly. The period between the falling edge of the first start bit (ST0) and the rising edge of the second start bit (ST1) is measured to generate an internal-clock synchronized data stream.

(1) Internal clock cannot be observed.

(2) D0 is LSB and D7 is MSB. The data stream should be LSB first.

logic diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)(1)

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(1) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

(2) The value of V_{CC} is provided in the recommended operating condition table.

(3) The package thermal impedance is calculated in accordance with JEDEC 51-7.

recommended operating conditions⁽¹⁾

			V _{CC1}	V _{CC2}	MIN	MAX	UNIT
V _{CC1}	Supply voltage				3	5.5	V
V _{CC2}	Supply voltage				3	13.2	V
V _{IH}	High-level input voltage		3 V	3 V	V _{CC} × 0.7		V
			4.5 V	4.5 V	V _{CC} × 0.7		
V _{IL}	Low-level input voltage		3 V	3 V	V _{CC} × 0.3		V
			4.5 V	4.5 V	V _{CC} × 0.3		
V _I	Input voltage				0	5.5	V
V _O	Output voltage		4.5 V	4.5 V	0	5.5	V
				12 V	0	13.2	
I _{OH}	High-level output current	Y _n	OUTSEL = H	3 V	3 V	-2	mA
				4.5 V	4.5 V	-8	
				4.5 V	12 V	-24	
		SOUT		3 V	3 V	-4	mA
				4.5 V	4.5 V	-8	
I _{OL}	Low-level output current	Y _n	OUTSEL = H	3 V	3 V	2	mA
				4.5 V	4.5 V	8	
			OUTSEL = L	3 V	3 V	20	
				4.5 V	4.5 V	40	mA
		SOUT		3 V	3 V	4	
				4.5 V	4.5 V	8	
T _A	Operating free-air temperature				-40	85	°C

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		V _{CC1}	V _{CC2}	MIN	TYP	MAX	UNIT	
V _{T+} Positive-going input threshold voltage		All inputs		3.3 V	3.3 V			2.31	V	
				5 V	5 V			3.5		
V _{T-} Negative-going input threshold voltage		All inputs		3.3 V	3.3 V	0.99			V	
				5 V	5 V	1.5				
ΔV _T Hysteresis (V _{T+} – V _{T-})		All inputs		3.3 V	3.3 V	0.33		1.32	V	
				5 V	5 V	0.5		2		
V _{OH}	Y _n	I _{OH} = –2 mA		3 V	3 V	2.38			V	
		I _{OH} = –8 mA		4.5 V	4.5 V	3.8				
		I _{OH} = –24 mA		4.5 V	12 V	11				
	S _{OUT}	I _{OH} = –4 mA		3 V	3 V	2.38				
		I _{OH} = –8 mA		4.5 V	4.5 V	3.8				
V _{OL}	Y _n	I _{OL} = 2 mA (OUTSEL = H)		3 V	3 V		0.44		V	
		I _{OL} = 8 mA (OUTSEL = H)		4.5 V	4.5 V		0.44			
		I _{OL} = 40 mA (OUTSEL = L)		4.5 V	4.5 V		0.5			
	S _{OUT}	I _{OL} = 4 mA		3 V	3 V		0.44			
		I _{OL} = 8 mA		4.5 V	4.5 V		0.44			
I _I	V _I = 5.5 V or GND		0 to 5.5 V				±1	μA		
I _{OZ}	V _O = V _{CC} or GND (OUTSEL = H)		5.5 V	5.5 V			±5	μA		
I _{OH}	V _O = 12 V (OUTSEL = L)		5.5 V	5.5 V			5	μA		
I _{CC}	V _I = V _{CC} or GND, I _O = 0	OUTSEL = H	5.5 V	5.5 V			5	mA		
							20			
I _{off} (except S _{OUT})	V _I or V _O = 0 to 5.5 V, V _{CC} = 0		0	0			±50	μA		
C _i	V _I = V _{CC} or GND		5 V	5 V		5		pF		

switching characteristics over recommended operating free-air temperature range, V_{CC1} = V_{CC2} = 3.3 V ± 0.3 V (unless otherwise noted) (see Figures 1 and 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	T _A = 25°C			MIN	MAX	UNIT			
				MIN	TYP	MAX						
t _{pd}	D7	Y	C _L = 50 pF	Pw/2 (1)			ns	ns				
	D7	S _{OUT}		Pw/2 (1)								
	RESET	Y		200								
	OE ⁽²⁾	Y		200								
t _{en}	OE ⁽³⁾	Y	Pw	200			ns	ns				
t _{dis}	OE ⁽³⁾	Y		200								
t _w		S _{OUT}		(4)								
Data rate							2	24	Kbps			

(1) The t_{pd} is dependent on the data pulse width (Pw), and Y outputs are changed after one-half of Pw, because the internal clock is synchronized at the middle of the data pulse. Not tested, but specified by design.

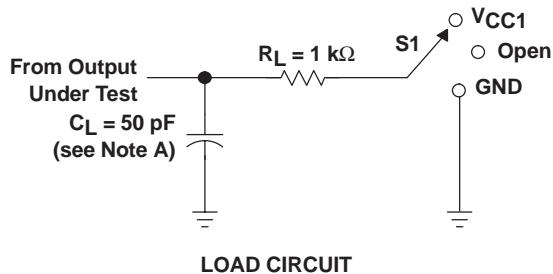
(2) When outputs are open collector (OUTSEL = L)

(3) When outputs are push-pull (OUTSEL = H)

(4) S_{OUT} goes low when the data is received correctly and maintains a low level for one data-pulse period. Not tested, but specified by design.

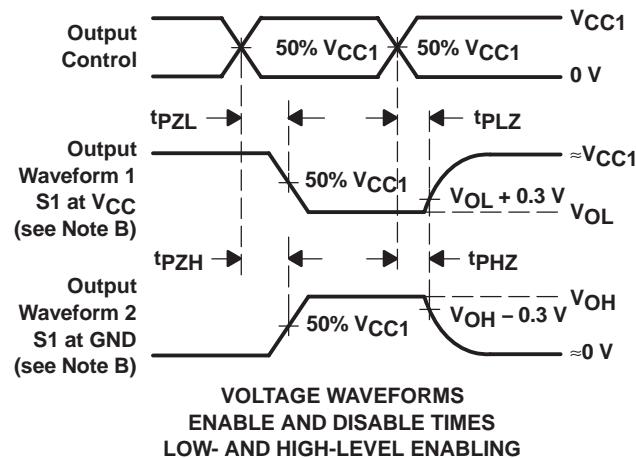
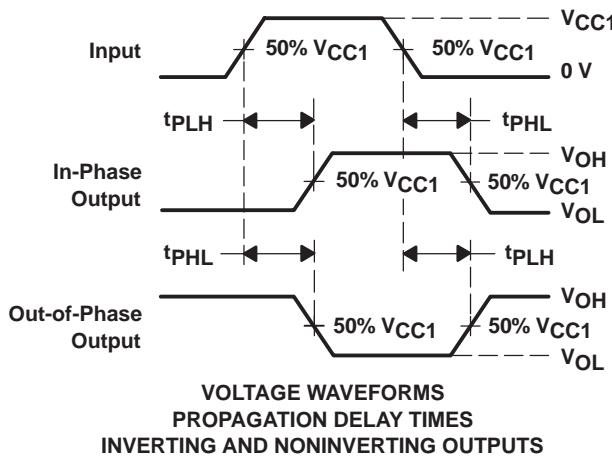
switching characteristics over recommended operating free-air temperature range,
 $V_{CC1} = V_{CC2} = 5 \text{ V} \pm 0.5 \text{ V}$ (unless otherwise noted) (see Figures 1 and 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	$T_A = 25^\circ\text{C}$			MIN	MAX	UNIT
				MIN	TYP	MAX			
t_{pd}	D7	Y	$C_L = 50 \text{ pF}$	Pw/2	(1)		ns	150	ns
	D7	SOUT		Pw/2	(1)				
	<u>RESET</u>	Y							
	<u>OE</u> ⁽²⁾	Y							
t_{en}	<u>OE</u> ⁽³⁾	Y					150	ns	
t_{dis}	<u>OE</u> ⁽³⁾	Y					150	ns	
t_w		SOUT		Pw	(4)				ns
Data rate							2	24	Kbps


(1) The t_{pd} is dependent on the data pulse width (Pw), and Y outputs are changed after one-half of Pw, because the internal clock is synchronized at the middle of the data pulse. Not tested, but specified by design.

(2) When outputs are open collector (OUTSEL = L)

(3) When outputs are push-pull (OUTSEL = H)



(4) SOUT goes low when the data is received correctly and maintains a low level for one data-pulse period. Not tested, but specified by design.

**PARAMETER MEASUREMENT INFORMATION
(PUSH-PULL OUTPUT)**

TEST	$S1$
t_{PLH}/t_{PHL}	Open
t_{PLZ}/t_{PZL}	V_{CC1}
t_{PHZ}/t_{PZH}	Ground

LOAD CIRCUIT

NOTES:

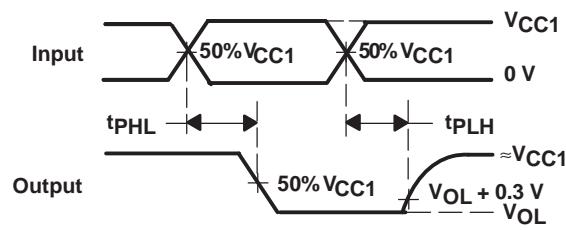

- C_L includes probe and jig capacitance.
- Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- All input pulses are supplied by generators having the following characteristics: $Z_O = 50 \Omega$, $t_r \leq 3 \text{ ns}$, $t_f \leq 3 \text{ ns}$.
- The outputs are measured one at a time, with one input transition per measurement.
- t_{PLZ} and t_{PZH} are the same as t_{dis} .
- t_{PZL} and t_{PZH} are the same as t_{en} .
- t_{PHL} and t_{PLH} are the same as t_{pd} .
- All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

**PARAMETER MEASUREMENT INFORMATION
(OPEN-COLLECTOR OUTPUT)**

LOAD CIRCUIT FOR
OPEN-COLLECTOR OUTPUTS

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

NOTES:

- C_L includes probe and jig capacitance.
- All input pulses are supplied by generators having the following characteristics: $\text{PRR} \leq 1 \text{ MHz}$, $Z_O = 50 \Omega$, $t_r \leq 3 \text{ ns}$, $t_f \leq 3 \text{ ns}$.
- The outputs are measured one at a time, with one input transition per measurement.
- t_{PHL} and t_{PLH} are the same as t_{pd} .

Figure 2. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN74LV8153N	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74LV8153NE4	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74LV8153PW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LV8153PWE4	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LV8153PWG4	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LV8153PWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LV8153PWRE4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LV8153PWRG4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

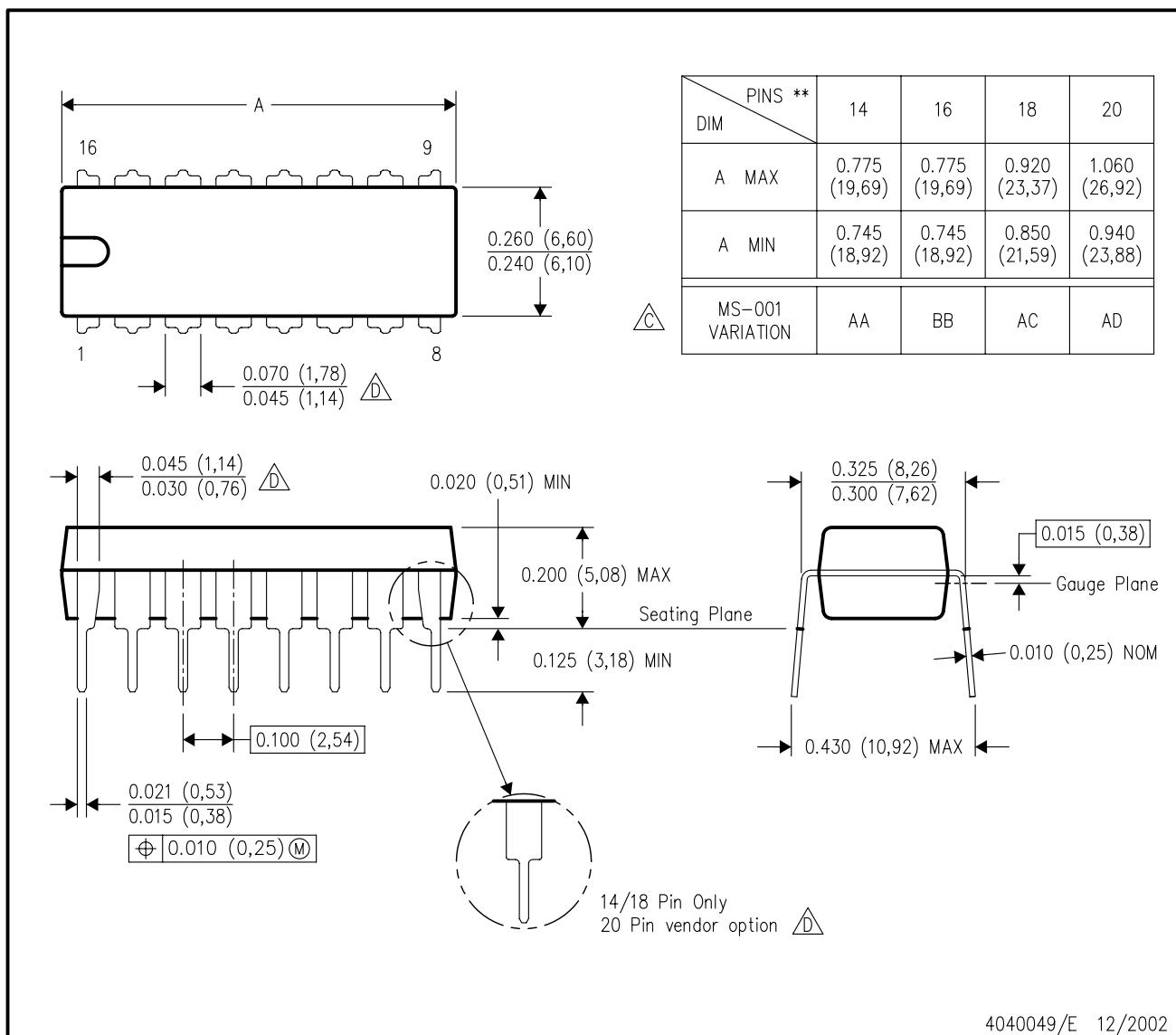
TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

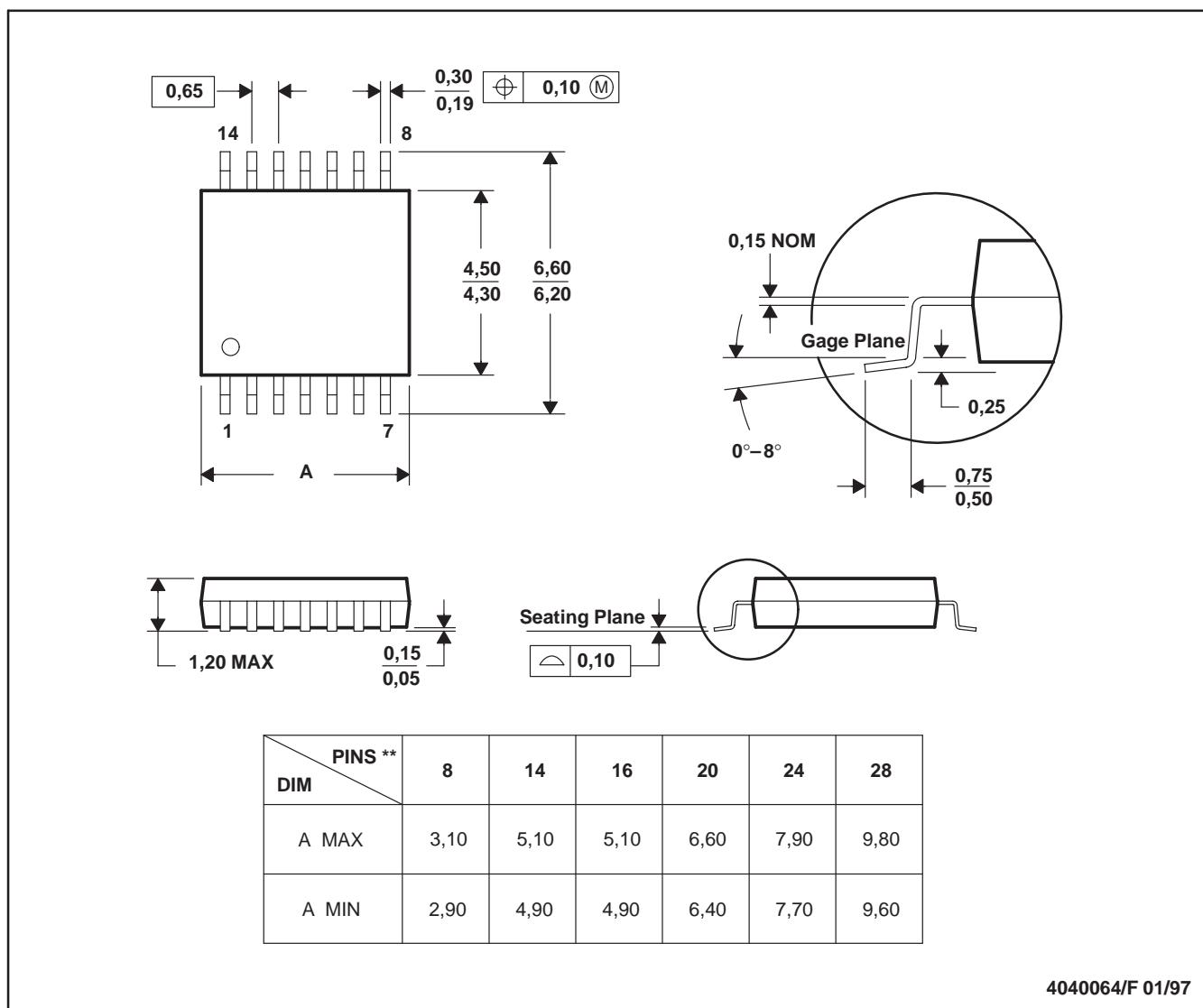
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

N (R-PDIP-T**)

16 PINS SHOWN

PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
 B. This drawing is subject to change without notice.


△ Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

△ The 20 pin end lead shoulder width is a vendor option, either half or full width.

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN

NOTES:

- All linear dimensions are in millimeters.
- This drawing is subject to change without notice.
- Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

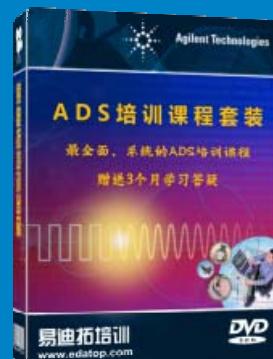
Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
Low Power Wireless	www.ti.com/lpw	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

射 频 和 天 线 设 计 培 训 课 程 推 荐

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立，致力并专注于微波、射频、天线设计研发人才的培养；我们于 2006 年整合合并微波 EDA 网(www.mweda.com)，现已发展成为国内最大的微波射频和天线设计人才培养基地，成功推出多套微波射频以及天线设计经典培训课程和 ADS、HFSS 等专业软件使用培训课程，广受客户好评；并先后与人民邮电出版社、电子工业出版社合作出版了多本专业图书，帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、研通高频、埃威航电、国人通信等多家国内知名公司，以及台湾工业技术研究院、永业科技、全一电子等多家台湾地区企业。

易迪拓培训课程列表：<http://www.edatop.com/peixun/rfe/129.html>


射频工程师养成培训课程套装

该套装精选了射频专业基础培训课程、射频仿真设计培训课程和射频电路测量培训课程三个类别共 30 门视频培训课程和 3 本图书教材；旨在引领学员全面学习一个射频工程师需要熟悉、理解和掌握的专业知识和研发设计能力。通过套装的学习，能够让学员完全达到和胜任一个合格的射频工程师的要求…

课程网址：<http://www.edatop.com/peixun/rfe/110.html>

ADS 学习培训课程套装

该套装是迄今国内最全面、最权威的 ADS 培训教程，共包含 10 门 ADS 学习培训课程。课程是由具有多年 ADS 使用经验的微波射频与通信系统设计领域资深专家讲解，并多结合设计实例，由浅入深、详细而又全面地讲解了 ADS 在微波射频电路设计、通信系统设计和电磁仿真设计方面的内容。能让您在最短的时间内学会使用 ADS，迅速提升个人技术能力，把 ADS 真正应用到实际研发工作中去，成为 ADS 设计专家…

课程网址：<http://www.edatop.com/peixun/ads/13.html>

HFSS 学习培训课程套装

该套课程套装包含了本站全部 HFSS 培训课程，是迄今国内最全面、最专业的 HFSS 培训教程套装，可以帮助您从零开始，全面深入学习 HFSS 的各项功能和在多个方面的工程应用。购买套装，更可超值赠送 3 个月免费学习答疑，随时解答您学习过程中遇到的棘手问题，让您的 HFSS 学习更加轻松顺畅…

课程网址：<http://www.edatop.com/peixun/hfss/11.html>

CST 学习培训课程套装

该培训套装由易迪拓培训联合微波 EDA 网共同推出, 是最全面、系统、专业的 CST 微波工作室培训课程套装, 所有课程都由经验丰富的专家授课, 视频教学, 可以帮助您从零开始, 全面系统地学习 CST 微波工作的各项功能及其在微波射频、天线设计等领域的设计应用。且购买该套装, 还可超值赠送 3 个月免费学习答疑…

课程网址: <http://www.edatop.com/peixun/cst/24.html>

HFSS 天线设计培训课程套装

套装包含 6 门视频课程和 1 本图书, 课程从基础讲起, 内容由浅入深, 理论介绍和实际操作讲解相结合, 全面系统的讲解了 HFSS 天线设计的全过程。是国内最全面、最专业的 HFSS 天线设计课程, 可以帮助您快速学习掌握如何使用 HFSS 设计天线, 让天线设计不再难…

课程网址: <http://www.edatop.com/peixun/hfss/122.html>

13.56MHz NFC/RFID 线圈天线设计培训课程套装

套装包含 4 门视频培训课程, 培训将 13.56MHz 线圈天线设计原理和仿真设计实践相结合, 全面系统地讲解了 13.56MHz 线圈天线的工作原理、设计方法、设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体操作, 同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试。通过该套课程的学习, 可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹配电路的原理、设计和调试…

详情浏览: <http://www.edatop.com/peixun/antenna/116.html>

我们的课程优势:

- ※ 成立于 2004 年, 10 多年丰富的行业经验,
- ※ 一直致力并专注于微波射频和天线设计工程师的培养, 更了解该行业对人才的要求
- ※ 经验丰富的一线资深工程师讲授, 结合实际工程案例, 直观、实用、易学

联系我们:

- ※ 易迪拓培训官网: <http://www.edatop.com>
- ※ 微波 EDA 网: <http://www.mweda.com>
- ※ 官方淘宝店: <http://shop36920890.taobao.com>