dBm - volts - watts conversion

(50-ohm system)

dBm	V	Po	dBm	V	Po	dBm	mV	Po	dBm	μV	Po
+53	100.0	200W	0	.225	1.0 mW	-49	0.80		-98	2.9	
+50	70.7	100W	-1	.200	.80 mW	-50	0.71	.01 μW	-99	2.51	
+49	64.0	80W	-2	.180	.64 mW	-51	0.64		-100	2.25	.1 pW
+48	58.0	64W	-3	.160	.50 mW	-52	0.57		-101	2.0	
+47	50.0	50W	-4	.141	.40 mW	-53	0.50		-102	1.8	
+46	44.5	40W	-5	.125	.32 mW	-54	0.45		-103	1.6	
+45	40.0	32W	-6	.115	.25 mW	-55	0.40		-104	1.41	
+44	32.5	25W	-7	.100	.20 mW	-56	0.351		-105	1.27	
+43	32.0	20W	-8	.090	.16 mW	-57	0.32		-106	1.18	
+42	28.0	16W	-9	.080	.125 mW	-58	0.286				
+41	26.2	12.5W	-10	.071	.10 mW	-59	0.251		dBm	nV	
+40	22.5	10W	-11	.064		-60	0.225	.001 μW	-107	1000	
+39	20.0	8W	-12	.058		-61	0.200		-108	900	
+38	18.0	6.4W	-13	.050		-62	0.180		-109	800	
+37	16.0	5W	-14	.045		-63	0.160		-110	710	.01 pW
+36	14.1	4W	-15	.040		-64	0.141		-109	640	· · · · · ·
+35	12.5	3.2W	-16	.0355					-112	580	
+34	11.5	2.5W				dBm	μV		-113	500	
+33	10.0	2W	dBm	mV		-65	128		-114	450	
+32	9.0	1.6W	-17	31.5		-66	115		-115	400	
+31	8.0	1.25W	-18	28.5		-67	100		-116	355	
+30	7.10	1.0W	-19	25.1		-68	90		-117	825	
+29	6.40	800 mW	-20	22.5	.01 mW	-69	80		-118	285	
+28	5.80	640 mW	-21	20.0		-70	71	.1nW	-119	251	
+27	5.00	500 mW	-22	17.9		-71	65		-120	225	.001 pW
+26	4.45	400 mW	-23	15.9		-72	58		-121	200	
+25	4.00	320 mW	-24	14.1		-73	50		-122	180	
+24	3.55	250 mW	-25	12.8		-74	45		-123	160	
+23	3.20	200 mW	-26	11.5		-75	40		-124	141	
+22	2.80	160 mW	-27	10.0		-76	35		-125	128	
+21	2.52	125 mW	-28	8.9		-77	32		-126	117	
+20	2.25	100 mW	-29	8.0		-78	29		-127	100	
+19	2.00	80 mW	-30	7.1	.001mW	-79	25		-128	90	
+18	1.80	64 mW	-31	6.25		-80	22.5	.01 nW	-129	80	.1 <i>f</i> W
+17	1.60	50 mW	-32	5.8		-81	20.0		-130	71	,
+16	1.41	40 mW	-33	5.0		-82	18.0		-131	61	
+15	1.25	32 mW	-34	4.5		-83	16.0		-132	58	
+14	1.15	25 mW	-35	4.0		-84	11.1		-133	50	
+13	1.00	20 mW	-36	3.5		-85	12.9		-134	45	
+12	.90	16 mW	-37	3.2		-86	11.5		-135	40	
+11	.80	12.5 mW	-38	2.85		-87	10.0		-136	35	
+10	.71	10 mW	-39	2.5		-88	9.0		-137	33	
+9	.64	8 mW	-40	2.25	.1μW	-89	8.0		-138	29	
+8	.58	6.4 mW	-41	2.0		-90	7.1	.001 nW	-139	25	
+7	.500	5 mW	-42	1.8		-91	6.1		-140	23	.01 <i>f</i> W
+6	.445	4 mW	-43	1.6		-92	5.75		1	-	. , ,
+5	.400	3.2 mW	-44	1.4		-93	5.0		+		
+4	.355	2.5 mW	-45	1.25		-94	4.5		+		
+3	.320	2.0 mW	-46	1.18		-95	4.0		+		
+2	.280	1.6 mW	-47	1.00		-96	3.51		+		
+1	.252	1.25 mW	-48	0.90		-97	3.2				
	.202	1.20 11100	1 ,0	0.70		//	٥.۷				

射频和天线设计培训课程推荐

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立,致力并专注于微波、射频、天线设计研发人才的培养;我们于2006年整合合并微波EDA网(www.mweda.com),现已发展成为国内最大的微波射频和天线设计人才培养基地,成功推出多套微波射频以及天线设计经典培训课程和ADS、HFSS等专业软件使用培训课程,广受客户好评;并先后与人民邮电出版社、电子工业出版社合作出版了多本专业图书,帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、研通高频、埃威航电、国人通信等多家国内知名公司,以及台湾工业技术研究院、永业科技、全一电子等多家台湾地区企业。

易迪拓培训课程列表: http://www.edatop.com/peixun/rfe/129.html

射频工程师养成培训课程套装

该套装精选了射频专业基础培训课程、射频仿真设计培训课程和射频电路测量培训课程三个类别共 30 门视频培训课程和 3 本图书教材;旨在引领学员全面学习一个射频工程师需要熟悉、理解和掌握的专业知识和研发设计能力。通过套装的学习,能够让学员完全达到和胜任一个合格的射频工程师的要求…

课程网址: http://www.edatop.com/peixun/rfe/110.html

ADS 学习培训课程套装

该套装是迄今国内最全面、最权威的 ADS 培训教程, 共包含 10 门 ADS 学习培训课程。课程是由具有多年 ADS 使用经验的微波射频与通信系统设计领域资深专家讲解,并多结合设计实例,由浅入深、详细而又全面地讲解了 ADS 在微波射频电路设计、通信系统设计和电磁仿真设计方面的内容。能让您在最短的时间内学会使用 ADS, 迅速提升个人技术能力,把 ADS 真正应用到实际研发工作中去,成为 ADS 设计专家...

课程网址: http://www.edatop.com/peixun/ads/13.html

HFSS 学习培训课程套装

该套课程套装包含了本站全部 HFSS 培训课程,是迄今国内最全面、最专业的 HFSS培训教程套装,可以帮助您从零开始,全面深入学习 HFSS的各项功能和在多个方面的工程应用。购买套装,更可超值赠送 3 个月免费学习答疑,随时解答您学习过程中遇到的棘手问题,让您的 HFSS学习更加轻松顺畅···

课程网址: http://www.edatop.com/peixun/hfss/11.html

CST 学习培训课程套装

该培训套装由易迪拓培训联合微波 EDA 网共同推出,是最全面、系统、 专业的 CST 微波工作室培训课程套装, 所有课程都由经验丰富的专家授 课,视频教学,可以帮助您从零开始,全面系统地学习 CST 微波工作的 各项功能及其在微波射频、天线设计等领域的设计应用。且购买该套装, 还可超值赠送3个月免费学习答疑…

HFSS 天线设计培训课程套装

套装包含6门视频课程和1本图书,课程从基础讲起,内容由浅入深, 理论介绍和实际操作讲解相结合,全面系统的讲解了 HFSS 天线设计的 全过程。是国内最全面、最专业的 HFSS 天线设计课程,可以帮助您快 速学习掌握如何使用 HFSS 设计天线, 让天线设计不再难…

课程网址: http://www.edatop.com/peixun/hfss/122.html

13.56MHz NFC/RFID 线圈天线设计培训课程套装

套装包含 4 门视频培训课程,培训将 13.56MHz 线圈天线设计原理和仿 真设计实践相结合,全面系统地讲解了13.56MHz线圈天线的工作原理、 设计方法、设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体 操作,同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试。通过 该套课程的学习,可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹 配电路的原理、设计和调试…

详情浏览: http://www.edatop.com/peixun/antenna/116.html

我们的课程优势:

- ※ 成立于 2004年, 10 多年丰富的行业经验,
- ※ 一直致力并专注于微波射频和天线设计工程师的培养,更了解该行业对人才的要求
- ※ 经验丰富的一线资深工程师讲授,结合实际工程案例,直观、实用、易学

联系我们:

- ※ 易迪拓培训官网: http://www.edatop.com
- ※ 微波 EDA 网: http://www.mweda.com
- ※ 官方淘宝店: http://shop36920890.taobao.com

易迪拓信训 官方网址: http://www.edatop.com