

PRODUCT SPECIFICATIONS

SHARP[®]

Integrated Circuits Group

LRS1B06

Stacked Chip

128M (x16) Boot Block Flash and 32M (x16) SCRAM and 8M (x16) SRAM

(Model No.: LRS1B06)

Spec No.: EL147068

Issue Date: January 27, 2003

SPEC No.	EL147068
ISSUE:	Jan. 27. 2003

To: _____

SPECIFICATIONS

Product Type 64M (x16) Flash Memory +64M (x16) Flash Memory
32M (x16) Smartcombo RAM +8M (x16) SRAM

L R S 1 B 0 6

Model No. (LRS1B06)

*This specifications contains 97 pages including the cover and appendix.

*Refer to LH28F320BF, LH28F640BF, LH28F128BF Series Appendix (FUM00701).

CUSTOMERS ACCEPTANCE

DATE: _____

BY: _____

PRESENTED

BY: Y. Hotta
Y. Hotta

Dept. General Manager

REVIEWED BY: PREPARED BY:

M. Kawat T. Kataoka

Product Development Dept. I
Flash Memory Division
Integrated Circuits Group
SHARP CORPORATION

- Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.
- When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.
 - (1) The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).
 - Office electronics
 - Instrumentation and measuring equipment
 - Machine tools
 - Audiovisual equipment
 - Home appliance
 - Communication equipment other than for trunk lines
 - (2) Those contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.
 - Control and safety devices for airplanes, trains, automobiles, and other transportation equipment
 - Mainframe computers
 - Traffic control systems
 - Gas leak detectors and automatic cutoff devices
 - Rescue and security equipment
 - Other safety devices and safety equipment, etc.
 - (3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy.
 - Aerospace equipment
 - Communications equipment for trunk lines
 - Control equipment for the nuclear power industry
 - Medical equipment related to life support, etc.
 - (4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.
- Please direct all queries regarding the products covered herein to a sales representative of the company.

Contents

1. Description	3
2. Pin Configuration	4
3. Block Diagram	6
4. Absolute Maximum Ratings	7
5. Recommended DC Operating Conditions	7
6. Flash Memory 1	8
6.1 Truth Table	8
6.1.1 Bus Operation	8
6.1.2 Simultaneous Operation Modes Allowed with Four Planes	9
6.2 Command Definitions for Flash Memory	10
6.2.1 Command Definitions	10
6.2.2 Identifier Codes for Read Operation	12
6.2.3 Functions of Block Lock and Block Lock-Down	13
6.2.4 Block Locking State Transitions upon Command Write	13
6.2.5 Block Locking State Transitions upon \overline{WP} Transition	14
6.3 Register Definition	15
6.4 Memory Map for Flash Memory	18
6.5 DC Electrical Characteristics for Flash Memory	19
6.6 AC Electrical Characteristics for Flash Memory	21
6.6.1 AC Test Conditions	21
6.6.2 Read Cycle	21
6.6.3 Write Cycle ($F-\overline{WE}$ / $F_1-\overline{CE}$ Controlled)	22
6.6.4 Block Erase, Full Chip Erase, (Page Buffer) Program Performance	23
6.6.5 Flash Memory AC Characteristics Timing Chart	24
6.6.6 Reset Operations	28
7. Flash Memory 2	29
7.1 Truth Table	29
7.1.1 Bus Operation	29
7.1.2 Simultaneous Operation Modes Allowed with Four Planes	30
7.2 Command Definitions for Flash Memory	31
7.2.1 Command Definitions	31
7.2.2 Identifier Codes for Read Operation	33
7.2.3 Functions of Block Lock and Block Lock-Down	34
7.2.4 Block Locking State Transitions upon Command Write	34
7.2.5 Block Locking State Transitions upon \overline{WP} Transition	35
7.3 Register Definition	36
7.4 Memory Map for Flash Memory	39
7.5 DC Electrical Characteristics for Flash Memory	40
7.6 AC Electrical Characteristics for Flash Memory	42
7.6.1 AC Test Conditions	42
7.6.2 Read Cycle	42
7.6.3 Write Cycle ($F-\overline{WE}$ / $F_2-\overline{CE}$ Controlled)	43
7.6.4 Block Erase, Full Chip Erase, (Page Buffer) Program Performance	44
7.6.5 Flash Memory AC Characteristics Timing Chart	45
7.6.6 Reset Operations	49

8. Smartcombo RAM	50
8.1 Truth Table	50
8.1.1 Bus Operation	50
8.2 DC Electrical Characteristics for Smartcombo RAM	51
8.3 AC Electrical Characteristics for Smartcombo RAM	52
8.3.1 AC Test Conditions	52
8.3.2 Read Cycle	53
8.3.3 Write Cycle	54
8.3.4 Initialization	55
8.3.5 Sleep Mode Entry / Exit	55
8.4 Initialization	56
8.5 Page Read Operation	58
8.5.1 Features of Page Read Operation	58
8.6 Mode Register Settings	59
8.6.1 Mode Register Setting Method	59
8.6.2 Cautions for Setting Mode Register	59
8.7 Smartcombo RAM AC Characteristics Timing Chart	60
9. SRAM	74
9.1 Truth Table	74
9.1.1 Bus Operation	74
9.2 DC Electrical Characteristics for SRAM	75
9.3 AC Electrical Characteristics for SRAM	76
9.3.1 AC Test Conditions	76
9.3.2 Read Cycle	76
9.3.3 Write Cycle	77
9.4 SRAM AC Characteristics Timing Chart	78
9.5 Data Retention Characteristics for SRAM	82
10. Notes	83
11. Flash Memory Data Protection	84
12. Design Considerations	85
13. Related Document Information	85
14. Package and Packing Specification	86

1. Description

The LRS1B06 is a combination memory organized as 4,194,304 x16 bit flash memory, 4,194,304 x16 bit flash memory, 2,097,152 x16 bit Smartcombo RAM and 524,288 x16 bit static RAM in one package.

Features

- Power supply • • • • 2.7V to 3.1V
- Operating temperature • • • • -25°C to +85°C
- Not designed or rated as radiation hardened
- 72 pin CSP(LCSP072-P-0811) plastic package
- Flash memory has P-type bulk silicon, and Smartcombo RAM has P-type bulk silicon, and SRAM has P-type bulk silicon
- Flash memory and Smartcombo RAM share one power supply pin (F/SC-V_{CC})
- For specifications of Flash memory, Smartcombo RAM and SRAM, refer to specification of each chip

Standby current of Flash memory and Smartcombo RAM

- Power supply current • • • • 150 µA (Max.)

Flash Memory 1 (F₁: 64M (x16) bit Flash Memory)

- Access Time (Address) • • • • 65 ns (Max.)
- Power supply current (The current for F/SC-V_{CC} pin and V_{PP} pin)
 - Read • • • • 25 mA (Max. t_{CYCLE} = 200ns, CMOS Input)
 - Word write • • • • 60 mA (Max.)
 - Block erase • • • • 30 mA (Max.)

Flash Memory 2 (F₂: 64M (x16) bit Flash Memory)

- Access Time (Address) • • • • 65 ns (Max.)
- Power supply current (The current for F/SC-V_{CC} pin and V_{PP} pin)
 - Read • • • • 25 mA (Max. t_{CYCLE} = 200ns, CMOS Input)
 - Word write • • • • 60 mA (Max.)
 - Block erase • • • • 30 mA (Max.)

Smartcombo RAM (32M (x16) bit Smartcombo RAM)

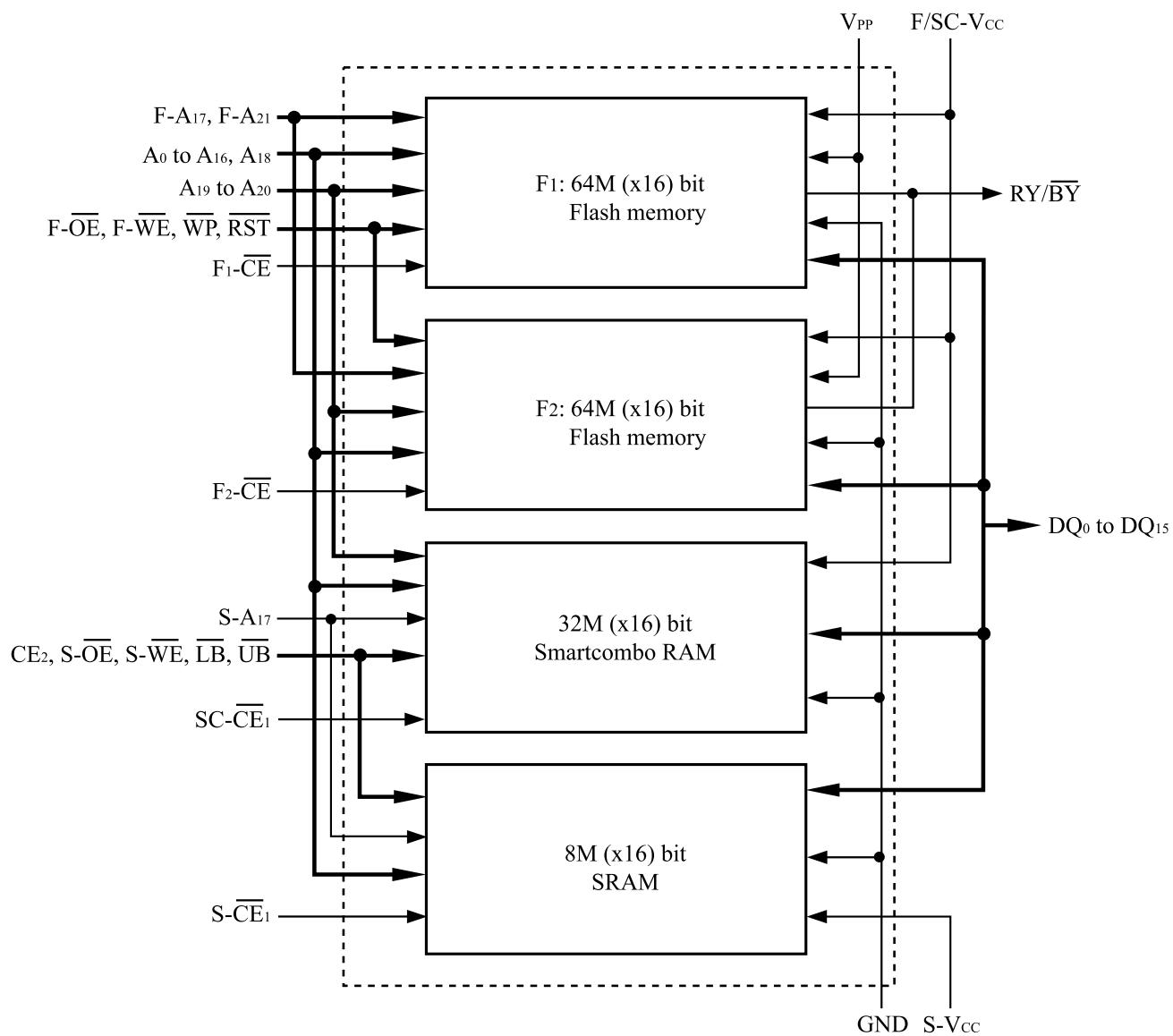
- Access Time (Address) • • • • 65 ns (Max.)
- Cycle time • • • • 65 ns (Min.)
- Power Supply current
 - Operating current • • • • 50 mA (Max. t_{RC}, t_{WC} = Min.)

SRAM (8M (x16) bit SRAM)

- Access Time (Address) • • • • 65 ns (Max.)
- Power Supply current
 - Operating current • • • • 45 mA (Max. t_{RC}, t_{WC} = Min.)
 - Standby current • • • • 25 µA (Max.)

2. Pin Configuration

	(TOP View)											
	1	2	3	4	5	6	7	8	9	10	11	12
A	NC	NC	A20	A11	A15	A14	A13	A12	GND	NC	NC	NC
B			A16	A8	A10	A9	DQ15	S- <u>WE</u>	DQ14	DQ7		
C			F- <u>WE</u>	RY/ <u>BY</u>	F-A21	S-A17	DQ13	DQ6	DQ4	DQ5		
D	GND	<u>RST</u>	T1	T2	DQ12	CE2	S-VCC	F/SC -VCC				
E	<u>WP</u>	VPP	A19	DQ11	F/SC -VCC	DQ10	DQ2	DQ3				
F	<u>LB</u>	<u>UB</u>	S- <u>OE</u>	T3	DQ9	DQ8	DQ0	DQ1				
G	A18	F-A17	A7	A6	A3	A2	A1	SC- <u>CE1</u>				
H	NC	NC	F2- <u>CE</u>	A5	A4	A0	F1- <u>CE</u>	GND	F- <u>OE</u>	S- <u>CE1</u>	NC	NC


Note) From T1 to T3 pins are needed to be open.

Two NC pins at the corner are connected.

Do not float any GND pins.

Pin	Description	Type
A ₀ to A ₁₆ , A ₁₈	Address Inputs (Common)	Input
A ₁₉ to A ₂₀	Address Inputs (Flash, Smartcombo RAM)	Input
F-A ₁₇ , F-A ₂₁	Address Inputs (Flash)	Input
S-A ₁₇	Address Input (SRAM, Smartcombo RAM)	Input
F ₁ - \overline{CE}	Chip Enable Input (Flash - F ₁ Selected)	Input
F ₂ - \overline{CE}	Chip Enable Input (Flash - F ₂ Selected)	Input
SC- \overline{CE}_1	Chip Enable Input (Smartcombo RAM)	Input
S- \overline{CE}_1	Chip Enable Input (SRAM)	Input
CE ₂	Chip Enable Input (SRAM), Sleep State Input (Smartcombo RAM) * See Chapter B-1	Input
F- \overline{WE}	Write Enable Input (Flash)	Input
S- \overline{WE}	Write Enable Input (SRAM, Smartcombo RAM)	Input
F- \overline{OE}	Output Enable Input (Flash)	Input
S- \overline{OE}	Output Enable Input (SRAM, Smartcombo RAM)	Input
\overline{LB}	SRAM, Smartcombo RAM Byte Enable Input (DQ ₀ to DQ ₇)	Input
\overline{UB}	SRAM, Smartcombo RAM Byte Enable Input (DQ ₈ to DQ ₁₅)	Input
\overline{RST}	Reset Power Down Input (Flash) Block erase and Write : V _{IH} Read : V _{IH} Reset Power Down : V _{IL}	Input
\overline{WP}	Write Protect Input (Flash) When \overline{WP} is V _{IL} , locked-down blocks cannot be unlocked. Erase or program operation can be executed to the blocks which are not locked and locked-down. When \overline{WP} is V _{IH} , lock-down is disabled.	Input
RY/ \overline{BY}	Ready/Busy Output (Flash) During an Erase or Write operation : V _{OL} Block Erase and Write Suspend : High-Z (High impedance)	Open Drain Output
DQ ₀ to DQ ₁₅	Data Inputs and Outputs (Common)	Input / Output
F/SC-V _{CC}	Power Supply (Flash, Smartcombo RAM)	Power
S-V _{CC}	Power Supply (SRAM)	Power
V _{PP}	Monitoring Power Supply Voltage (Flash) Block Erase and Write : V _{PP} = V _{PPH} All Blocks Locked : V _{PP} < V _{PPLK}	Input
GND	GND (Common)	Power
NC	Non Connection	-
T ₁ to T ₃	Test pins (Should be all open)	-

3. Block Diagram

4. Absolute Maximum Ratings

Symbol	Parameter	Notes	Ratings			Unit
V _{CC}	Supply Voltage	1	-0.2 to +3.9			V
V _{IN}	Input Voltage	1,2,3	-0.5 to V _{CC} +0.3			V
T _A	Operating Temperature		-25 to +85			°C
T _{STG}	Storage Temperature		-55 to +125			°C
V _{PP}	V _{PP} Voltage	1,2	-0.2 to +3.6			V

Notes:

1. The maximum applicable voltage on any pins with respect to GND.
2. -1.0V undershoot is allowed when the pulse width is less than 5 nsec.
3. V_{IN} should not be over V_{CC} +0.3V.

5. Recommended DC Operating Conditions

(T_A = -25°C to +85°C)

Symbol	Parameter	Notes	Min.	Typ.	Max.	Unit
V _{CC}	Supply Voltage	3	2.7		3.1	V
V _{PP}	V _{PP} Voltage (Write Operation)		1.65		3.1	V
	V _{PP} Voltage (Read Operation)		0		3.1	V
V _{IH}	Input Voltage		V _{CC} -0.4 ⁽²⁾		V _{CC} +0.3 ⁽¹⁾	V
V _{IL}	Input Voltage		-0.3		0.4	V

Notes:

1. V_{CC} is the lower of F/SC-V_{CC} or S-V_{CC}.
2. V_{CC} is the higher of F/SC-V_{CC} or S-V_{CC}.
3. V_{CC} includes both F/SC-V_{CC} and S-V_{CC}.

6. Flash Memory 1

6.1 Truth Table

6.1.1 Bus Operation ⁽¹⁾

Flash	Notes	F ₁ - <u>CE</u>	<u>RST</u>	F- <u>OE</u>	F- <u>WE</u>	DQ ₀ to DQ ₁₅
Read	3,5	L	H	L	H	(7)
Output Disable	5			H		High - Z
Write	2,3,4,5			L	D _{IN}	
Standby	5	H	H	X	X	High - Z
Reset Power Down	5,6	X	L			

Notes:

1. L = V_{IL}, H = V_{IH}, X = H or L, High-Z = High impedance. Refer to the DC Characteristics.
2. Command writes involving block erase, full chip erase, (page buffer) program are reliably executed when V_{PP} = V_{PPH} and V_{CC} = 2.7V to 3.1V.
Block erase, full chip erase, (page buffer) program with V_{PP} < V_{PPH} (Min.) produce spurious results and should not be attempted.
3. Never hold F-OE low and F-WE low at the same timing.
4. Refer to Section 6.2 Command Definitions for Flash Memory valid D_{IN} during a write operation.
5. WP set to V_{IL} or V_{IH}.
6. Electricity consumption of Flash Memory is lowest when RST = GND $\pm 0.2V$.
7. Flash Read Mode

Mode	Address	DQ ₀ to DQ ₁₅
Read Array	X	D _{OUT}
Read Identifier Codes	See 6.2.2	See 6.2.2
Read Query	Refer to the Appendix	Refer to the Appendix

6.1.2 Simultaneous Operation Modes Allowed with Four Planes ^(1,2)

IF ONE PARTITION IS:	THEN THE MODES ALLOWED IN THE OTHER PARTITION IS:									
	Read Array	Read ID	Read Status	Read Query	Word Program	Page Buffer Program	Block Erase	Full Chip Erase	Program Suspend	Block Erase Suspend
Read Array	X	X	X	X	X	X	X		X	X
Read ID	X	X	X	X	X	X	X		X	X
Read Status	X	X	X	X	X	X	X	X	X	X
Read Query	X	X	X	X	X	X	X		X	X
Word Program	X	X	X	X						X
Page Buffer Program	X	X	X	X						X
Block Erase	X	X	X	X						
Full Chip Erase			X							
Program Suspend	X	X	X	X						X
Block Erase Suspend	X	X	X	X	X	X			X	

Notes:

1. "X" denotes the operation available.

2. Configurative Partition Dual Work Restrictions:

Status register reflects partition state, not WSM (Write State Machine) state - this allows a status register for each partition.

Only one partition can be erased or programmed at a time - no command queuing.

Commands must be written to an address within the block targeted by that command.

6.2 Command Definitions for Flash Memory ⁽¹¹⁾

6.2.1 Command Definitions

Command	Bus Cycles Req'd	Notes	First Bus Cycle			Second Bus Cycle		
			Oper ⁽¹⁾	Address ⁽²⁾	Data	Oper ⁽¹⁾	Address ⁽²⁾	Data ⁽³⁾
Read Array	1		Write	PA	FFH			
Read Identifier Codes	≥ 2	4	Write	PA	90H	Read	IA	ID
Read Query	≥ 2	4	Write	PA	98H	Read	QA	QD
Read Status Register	2		Write	PA	70H	Read	PA	SRD
Clear Status Register	1		Write	PA	50H			
Block Erase	2	5	Write	BA	20H	Write	BA	D0H
Full Chip Erase	2	5, 9	Write	X	30H	Write	X	D0H
Program	2	5, 6	Write	WA	40H or 10H	Write	WA	WD
Page Buffer Program	≥ 4	5, 7	Write	WA	E8H	Write	WA	N-1
Block Erase and (Page Buffer) Program Suspend	1	8, 9	Write	PA	B0H			
Block Erase and (Page Buffer) Program Resume	1	8, 9	Write	PA	D0H			
Set Block Lock Bit	2		Write	BA	60H	Write	BA	01H
Clear Block Lock Bit	2	10	Write	BA	60H	Write	BA	D0H
Set Block Lock-down Bit	2		Write	BA	60H	Write	BA	2FH
Set Partition Configuration Register	2		Write	PCRC	60H	Write	PCRC	04H

Notes:

1. Bus operations are defined in 6.1.1 Bus Operation.
2. All addresses which are written at the first bus cycle should be the same as the addresses which are written at the second bus cycle.
X=Any valid address within the device.
PA=Address within the selected partition.
IA=Identifier codes address (See 6.2.2 Identifier Codes for Read Operation).
QA=Query codes address. Refer to the LH28F320BF, LH28F640BF, LH28F128BF series Appendix for details.
BA=Address within the block being erased, set/cleared block lock bit or set block lock-down bit.
WA=Address of memory location for the Program command or the first address for the Page Buffer Program command.
PCRC=Partition configuration register code presented on the address A₀-A₁₅.
3. ID=Data read from identifier codes (See 6.2.2 Identifier Codes for Read Operation).
QD=Data read from query database. Refer to the LH28F320BF, LH28F640BF, LH28F128BF series Appendix for details.
SRD=Data read from status register. See 6.3 Register Definition for a description of the status register bits.
WD=Data to be programmed at location WA. Data is latched on the rising edge of F-W_E or F₁-C_E (whichever goes high first) during command write cycles.
N-1=N is the number of the words to be loaded into a page buffer.
4. Following the Read Identifier Codes command, read operations access manufacturer code, device code, block lock configuration code, partition configuration register code (See 6.2.2 Identifier Codes for Read Operation).
The Read Query command is available for reading CFI (Common Flash Interface) information.
5. Block erase, full chip erase or (page buffer) program cannot be executed when the selected block is locked. Unlocked block can be erased or programmed when R_{ST} is V_{IH}.
6. Either 40H or 10H are recognized by the CUI (Command User Interface) as the program setup.
7. Following the third bus cycle, input the program sequential address and write data of “N” times. Finally, input the any valid address within the target block to be programmed and the confirm command (D0H). Refer to the LH28F320BF, LH28F640BF, LH28F128BF series Appendix for details.

8. If the program operation in one partition is suspended and the erase operation in other partition is also suspended, the suspended program operation should be resumed first, and then the suspended erase operation should be resumed next.
9. Full chip erase operation can not be suspended.
10. Following the Clear Block Lock Bit command, block which is not locked-down is unlocked when \overline{WP} is V_{IL} . When \overline{WP} is V_{IH} , lock-down bit is disabled and the selected block is unlocked regardless of lock-down configuration.
11. Commands other than those shown above are reserved by SHARP for future device implementations and should not be used.

6.2.2 Identifier Codes for Read Operation

	Code	Address [A ₁₅ -A ₀]	Data [DQ ₁₅ -DQ ₀]	Notes
Manufacturer Code	Manufacturer Code	0000H	00B0H	4
Device Code	64M (x16) Top Parameter Device Code	0001H	00B0H	1, 4
Block Lock Configuration Code	Block is Unlocked	Block Address + 2	DQ ₀ = 0	2
	Block is Locked		DQ ₀ = 1	2
	Block is not Locked-Down		DQ ₁ = 0	2
	Block is Locked-Down		DQ ₁ = 1	2
Device Configuration Code	Partition Configuration Register	0006H	PCRC	3, 4

Notes:

1. Top parameter device has its parameter blocks in the plane 3 (The highest address).
2. Block Address = The beginning location of a block address within the partition to which the Read Identifier Codes command (90H) has been written.
DQ₁₅-DQ₂ is reserved for future implementation.
3. PCRC = Partition Configuration Register Code.
4. The address A₂₁-A₁₆ are shown in below table for reading the manufacturer, device, device configuration code.
The address to read the identifier codes is dependent on the partition which is selected when writing the Read Identifier Codes command (90H).

See Section 6.3 Partition Configuration Register Definition (P.17) for the partition configuration register.

Identifier Codes for Read Operation on Partition Configuration (64M (x16)-bit device)

Partition Configuration Register			Address (64M (x16)-bit device)
PCR.10	PCR.9	PCR.8	[A ₂₁ -A ₁₆]
0	0	0	00H
0	0	1	00H or 10H
0	1	0	00H or 20H
1	0	0	00H or 30H
0	1	1	00H or 10H or 20H
1	1	0	00H or 20H or 30H
1	0	1	00H or 10H or 30H
1	1	1	00H or 10H or 20H or 30H

6.2.3 Functions of Block Lock and Block Lock-Down

Current State					Erase/Program Allowed ⁽²⁾
State	\overline{WP}	$DQ_1^{(1)}$	$DQ_0^{(1)}$	State Name	
[000]	0	0	0	Unlocked	Yes
[001] ⁽³⁾	0	0	1	Locked	No
[011]	0	1	1	Locked-down	No
[100]	1	0	0	Unlocked	Yes
[101] ⁽³⁾	1	0	1	Locked	No
[110] ⁽⁴⁾	1	1	0	Lock-down Disable	Yes
[111]	1	1	1	Lock-down Disable	No

Notes:

1. $DQ_0 = 1$: a block is locked; $DQ_0 = 0$: a block is unlocked.
 $DQ_1 = 1$: a block is locked-down; $DQ_1 = 0$: a block is not locked-down.
2. Erase and program are general terms, respectively, to express: block erase, full chip erase and (page buffer) program operations.
3. At power-up or device reset, all blocks default to locked state and are not locked-down, that is, [001] ($\overline{WP} = 0$) or [101] ($\overline{WP} = 1$), regardless of the states before power-off or reset operation.
4. When \overline{WP} is driven to V_{IL} in [110] state, the state changes to [011] and the blocks are automatically locked.

6.2.4 Block Locking State Transitions upon Command Write⁽⁴⁾

Current State				Result after Lock Command Written (Next State)		
State	\overline{WP}	DQ_1	DQ_0	Set Lock ⁽¹⁾	Clear Lock ⁽¹⁾	Set Lock-down ⁽¹⁾
[000]	0	0	0	[001]	No Change	[011] ⁽²⁾
[001]	0	0	1	No Change ⁽³⁾	[000]	[011]
[011]	0	1	1	No Change	No Change	No Change
[100]	1	0	0	[101]	No Change	[111] ⁽²⁾
[101]	1	0	1	No Change	[100]	[111]
[110]	1	1	0	[111]	No Change	[111] ⁽²⁾
[111]	1	1	1	No Change	[110]	No Change

Notes:

1. “Set Lock” means Set Block Lock Bit command, “Clear Lock” means Clear Block Lock Bit command and “Set Lock-down” means Set Block Lock-Down Bit command.
2. When the Set Block Lock-Down Bit command is written to the unlocked block ($DQ_0 = 0$), the corresponding block is locked-down and automatically locked at the same time.
3. “No Change” means that the state remains unchanged after the command written.
4. In this state transitions table, assumes that \overline{WP} is not changed and fixed V_{IL} or V_{IH} .

6.2.5 Block Locking State Transitions upon \overline{WP} Transition ⁽⁴⁾

Previous State	Current State				Result after \overline{WP} Transition (Next State)	
	State	\overline{WP}	DQ ₁	DQ ₀	$\overline{WP} = 0 \rightarrow 1$ ⁽¹⁾	$\overline{WP} = 1 \rightarrow 0$ ⁽¹⁾
-	[000]	0	0	0	[100]	-
-	[001]	0	0	1	[101]	-
[110] ⁽²⁾	[011]	0	1	1	[110]	-
Other than [110] ⁽²⁾					[111]	-
-	[100]	1	0	0	-	[000]
-	[101]	1	0	1	-	[001]
-	[110]	1	1	0	-	[011] ⁽³⁾
-	[111]	1	1	1	-	[011]

Notes:

1. “ $\overline{WP} = 0 \rightarrow 1$ ” means that \overline{WP} is driven to V_{IH} and “ $\overline{WP} = 1 \rightarrow 0$ ” means that \overline{WP} is driven to V_{IL} .
2. State transition from the current state [011] to the next state depends on the previous state.
3. When \overline{WP} is driven to V_{IL} in [110] state, the state changes to [011] and the blocks are automatically locked.
4. In this state transitions table, assumes that lock configuration commands are not written in previous, current and next state.

6.3 Register Definition

Status Register Definition

R	R	R	R	R	R	R	R
15	14	13	12	11	10	9	8
WSMS	BESS	BEFCES	PBPS	VPPS	PBPSS	DPS	R
7	6	5	4	3	2	1	0

SR.15 - SR.8 = RESERVED FOR FUTURE ENHANCEMENTS (R)	Notes: Status Register indicates the status of the partition, not WSM (Write State Machine). Even if the SR.7 is "1", the WSM may be occupied by the other partition when the device is set to 2, 3 or 4 partitions configuration.
SR.7 = WRITE STATE MACHINE STATUS (WSMS) 1 = Ready 0 = Busy	
SR.6 = BLOCK ERASE SUSPEND STATUS (BESS) 1 = Block Erase Suspended 0 = Block Erase in Progress/Completed	Check SR.7 or RY/BY to determine block erase, full chip erase, (page buffer) program completion. SR.6 - SR.1 are invalid while SR.7="0".
SR.5 = BLOCK ERASE AND FULL CHIP ERASE STATUS (BEFCES) 1 = Error in Block Erase or Full Chip Erase 0 = Successful Block Erase or Full Chip Erase	If both SR.5 and SR.4 are "1"s after a block erase, full chip erase, (page buffer) program, set/clear block lock bit, set block lock-down bit or set partition configuration register attempt, an improper command sequence was entered.
SR.4 = (PAGE BUFFER) PROGRAM STATUS (PBPS) 1 = Error in (Page Buffer) Program 0 = Successful (Page Buffer) Program	SR.3 does not provide a continuous indication of V _{PP} level. The WSM interrogates and indicates the V _{PP} level only after Block Erase, Full Chip Erase, (Page Buffer) Program command sequences. SR.3 is not guaranteed to report accurate feedback when V _{PP} ≠V _{PPH} or V _{PPLK} .
SR.3 = V _{PP} STATUS (VPPS) 1 = V _{PP} LOW Detect, Operation Abort 0 = V _{PP} OK	
SR.2 = (PAGE BUFFER) PROGRAM SUSPEND STATUS (PBPSS) 1 = (Page Buffer) Program Suspended 0 = (Page Buffer) Program in Progress/Completed	SR.1 does not provide a continuous indication of block lock bit. The WSM interrogates the block lock bit only after Block Erase, Full Chip Erase, (Page Buffer) Program command sequences. It informs the system, depending on the attempted operation, if the block lock bit is set. Reading the block lock configuration codes after writing the Read Identifier Codes command indicates block lock bit status.
SR.1 = DEVICE PROTECT STATUS (DPS) 1 = Erase or Program Attempted on a Locked Block, Operation Abort 0 = Unlocked	
SR.0 =RESERVED FOR FUTURE ENHANCEMENTS (R)	SR.15 - SR.8 and SR.0 are reserved for future use and should be masked out when polling the status register.

Extended Status Register Definition

R	R	R	R	R	R	R	R	R
15	14	13	12	11	10	9	8	
SMS	R	R	R	R	R	R	R	R
7	6	5	4	3	2	1	0	

XSR.15-8 = RESERVED FOR FUTURE ENHANCEMENTS (R)

XSR.7 = STATE MACHINE STATUS (SMS)

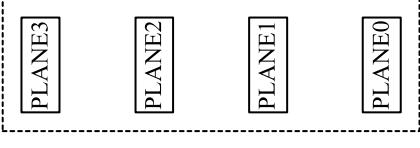
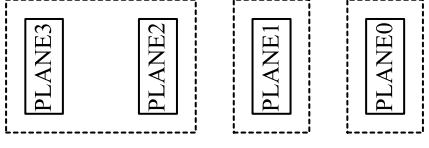
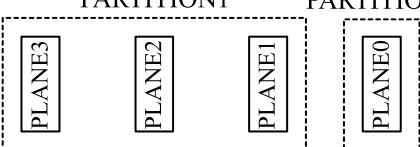
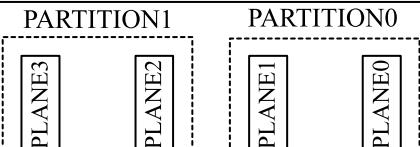
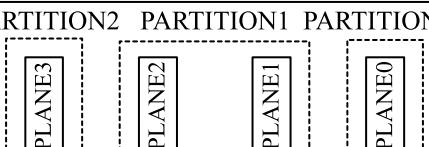
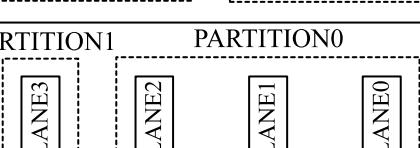
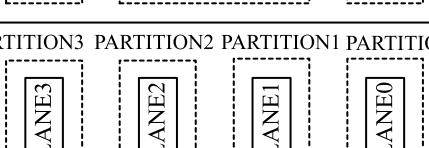
1 = Page Buffer Program available

0 = Page Buffer Program not available

XSR.6-0 = RESERVED FOR FUTURE ENHANCEMENTS (R)

Notes:

After issue a Page Buffer Program command (E8H), XSR.7="1" indicates that the entered command is accepted. If XSR.7 is "0", the command is not accepted and a next Page Buffer Program command (E8H) should be issued again to check if page buffer is available or not.








XSR.15-8 and XSR.6-0 are reserved for future use and should be masked out when polling the extended status register.

Partition Configuration Register Definition

R	R	R	R	R	PC2	PC1	PC0
15	14	13	12	11	10	9	8
R	R	R	R	R	R	R	R
7	6	5	4	3	2	1	0

PCR.15-11 = RESERVED FOR FUTURE ENHANCEMENTS (R)	111 = There are four partitions in this configuration. Each plane corresponds to each partition respectively. Dual work operation is available between any two partitions.
<p>PCR.10-8 = PARTITION CONFIGURATION (PC2-0)</p> <p>000 = No partitioning. Dual Work is not allowed.</p> <p>001 = Plane1-3 are merged into one partition. (default in a bottom parameter device)</p> <p>010 = Plane 0-1 and Plane 2-3 are merged into one partition respectively.</p> <p>100 = Plane 0-2 are merged into one partition. (default in a top parameter device)</p> <p>011 = Plane 2-3 are merged into one partition. There are three partitions in this configuration. Dual work operation is available between any two partitions.</p> <p>110 = Plane 0-1 are merged into one partition. There are three partitions in this configuration. Dual work operation is available between any two partitions.</p> <p>101 = Plane 1-2 are merged into one partition. There are three partitions in this configuration. Dual work operation is available between any two partitions.</p>	<p>PCR.7-0 = RESERVED FOR FUTURE ENHANCEMENTS (R)</p> <p>Notes: After power-up or device reset, PCR 10-8 (PC2-0) is set to "001" in a bottom parameter device and "100" in a top parameter device.</p> <p>See the table below for more details.</p> <p>PCR.15-11 and PCR.7-0 are reserved for future use and should be masked out when checking the partition configuration register.</p>

Partition Configuration

PC2 PC1 PC0	PARTITIONING FOR DUAL WORK	PC2 PC1 PC0	PARTITIONING FOR DUAL WORK
0 0 0	PARTITION0 	0 1 1	PARTITION2 PARTITION1 PARTITION0
0 0 1	PARTITION1 PARTITION0 	1 1 0	PARTITION2 PARTITION1 PARTITION0
0 1 0	PARTITION1 PARTITION0 	1 0 1	PARTITION2 PARTITION1 PARTITION0
1 0 0	PARTITION1 PARTITION0 	1 1 1	PARTITION3 PARTITION2 PARTITION1 PARTITION0

6.4 Memory Map for Flash Memory

BLOCK NUMBER ADDRESS RANGE

134	4K-WORD	3FF000H - 3FFFFFFH
133	4K-WORD	3FE000H - 3FFFFFFH
132	4K-WORD	3FD000H - 3FFFFFFH
131	4K-WORD	3FC000H - 3FFFFFFH
130	4K-WORD	3FB000H - 3FFFFFFH
129	4K-WORD	3FA000H - 3FFFFFFH
128	4K-WORD	3F9000H - 3FFFFFFH
127	4K-WORD	3F8000H - 3FFFFFFH
126	32K-WORD	3F0000H - 3FFFFFFH
125	32K-WORD	3E8000H - 3FFFFFFH
124	32K-WORD	3E0000H - 3E7FFFH
123	32K-WORD	3D8000H - 3DFFFFH
122	32K-WORD	3D0000H - 3D7FFFH
121	32K-WORD	3C8000H - 3C7FFFH
120	32K-WORD	3C0000H - 3C7FFFH
119	32K-WORD	3B8000H - 3BFFFFH
118	32K-WORD	3B0000H - 3B7FFFH
117	32K-WORD	3A8000H - 3AFFFFH
116	32K-WORD	3A0000H - 3A7FFFH
115	32K-WORD	398000H - 39FFFFH
114	32K-WORD	390000H - 397FFFH
113	32K-WORD	388000H - 38FFFFH
112	32K-WORD	380000H - 387FFFH
111	32K-WORD	378000H - 37FFFFH
110	32K-WORD	370000H - 377FFFH
109	32K-WORD	368000H - 36FFFFH
108	32K-WORD	360000H - 367FFFH
107	32K-WORD	358000H - 35FFFFH
106	32K-WORD	350000H - 357FFFH
105	32K-WORD	348000H - 34FFFFH
104	32K-WORD	340000H - 347FFFH
103	32K-WORD	338000H - 33FFFFH
102	32K-WORD	330000H - 337FFFH
101	32K-WORD	328000H - 32FFFFH
100	32K-WORD	320000H - 327FFFH
99	32K-WORD	318000H - 31FFFFH
98	32K-WORD	310000H - 317FFFH
97	32K-WORD	308000H - 30FFFFH
96	32K-WORD	300000H - 307FFFH

PLANE3 (PARAMETER PLANE)

Top Parameter

63	32K-WORD	1F8000H - 1FFFFFFH
62	32K-WORD	1F0000H - 1F7FFFH
61	32K-WORD	1E8000H - 1EFFFFH
60	32K-WORD	1E0000H - 1E7FFFH
59	32K-WORD	1D8000H - 1DFFFFH
58	32K-WORD	1D0000H - 1D7FFFH
57	32K-WORD	1C8000H - 1CFFFFH
56	32K-WORD	1C0000H - 1C7FFFH
55	32K-WORD	1B8000H - 1BFFFFH
54	32K-WORD	1B0000H - 1B7FFFH
53	32K-WORD	1A8000H - 1AFFFFH
52	32K-WORD	1A0000H - 1A7FFFH
51	32K-WORD	198000H - 19FFFFH
50	32K-WORD	190000H - 197FFFH
49	32K-WORD	188000H - 18FFFFH
48	32K-WORD	180000H - 187FFFH
47	32K-WORD	178000H - 17FFFFH
46	32K-WORD	170000H - 177FFFH
45	32K-WORD	168000H - 16FFFFH
44	32K-WORD	160000H - 167FFFH
43	32K-WORD	158000H - 15FFFFH
42	32K-WORD	150000H - 157FFFH
41	32K-WORD	148000H - 14FFFFH
40	32K-WORD	140000H - 147FFFH
39	32K-WORD	138000H - 13FFFFH
38	32K-WORD	130000H - 137FFFH
37	32K-WORD	128000H - 12FFFFH
36	32K-WORD	120000H - 127FFFH
35	32K-WORD	118000H - 11FFFFH
34	32K-WORD	110000H - 117FFFH
33	32K-WORD	108000H - 10FFFFH
32	32K-WORD	100000H - 107FFFH

PLANE1 (UNIFORM PLANE)

95	32K-WORD	2F8000H - 2FFFFFFH
94	32K-WORD	2F0000H - 2F7FFFH
93	32K-WORD	2E8000H - 2EFFFFH
92	32K-WORD	2E0000H - 2E7FFFH
91	32K-WORD	2D8000H - 2DFFFFH
90	32K-WORD	2D0000H - 2D7FFFH
89	32K-WORD	2C8000H - 2CFFFFH
88	32K-WORD	2C0000H - 2C7FFFH
87	32K-WORD	2B8000H - 2BFFFFH
86	32K-WORD	2B0000H - 2B7FFFH
85	32K-WORD	2A8000H - 2AFFFFH
84	32K-WORD	2A0000H - 2A7FFFH
83	32K-WORD	298000H - 29FFFFH
82	32K-WORD	290000H - 297FFFH
81	32K-WORD	288000H - 28FFFFH
80	32K-WORD	280000H - 287FFFH
79	32K-WORD	278000H - 27FFFH
78	32K-WORD	270000H - 277FFFH
77	32K-WORD	268000H - 26FFFFH
76	32K-WORD	260000H - 267FFFH
75	32K-WORD	258000H - 25FFFFH
74	32K-WORD	250000H - 257FFFH
73	32K-WORD	248000H - 24FFFFH
72	32K-WORD	240000H - 247FFFH
71	32K-WORD	238000H - 23FFFFH
70	32K-WORD	230000H - 237FFFH
69	32K-WORD	228000H - 22FFFFH
68	32K-WORD	220000H - 227FFFH
67	32K-WORD	218000H - 21FFFFH
66	32K-WORD	210000H - 217FFFH
65	32K-WORD	208000H - 20FFFFH
64	32K-WORD	200000H - 207FFFH

PLANE2 (UNIFORM PLANE)

31	32K-WORD	0F8000H - 0FFFFFFH
30	32K-WORD	0F0000H - 0F7FFFH
29	32K-WORD	0E8000H - 0EFFFFH
28	32K-WORD	0E0000H - 0E7FFFH
27	32K-WORD	0D8000H - 0DFFFFH
26	32K-WORD	0D0000H - 0D7FFFH
25	32K-WORD	0C8000H - 0CFFFFH
24	32K-WORD	0C0000H - 0C7FFFH
23	32K-WORD	0B8000H - 0BFFFFH
22	32K-WORD	0B0000H - 0B7FFFH
21	32K-WORD	0A8000H - 0AFFFFH
20	32K-WORD	0A0000H - 0A7FFFH
19	32K-WORD	098000H - 09FFFFH
18	32K-WORD	090000H - 097FFFH
17	32K-WORD	088000H - 08FFFFH
16	32K-WORD	080000H - 087FFFH
15	32K-WORD	078000H - 07FFFFH
14	32K-WORD	070000H - 077FFFH
13	32K-WORD	068000H - 06FFFFH
12	32K-WORD	060000H - 067FFFH
11	32K-WORD	058000H - 05FFFFH
10	32K-WORD	050000H - 057FFFH
9	32K-WORD	048000H - 04FFFFH
8	32K-WORD	040000H - 047FFFH
7	32K-WORD	038000H - 03FFFFH
6	32K-WORD	030000H - 037FFFH
5	32K-WORD	028000H - 02FFFFH
4	32K-WORD	020000H - 027FFFH
3	32K-WORD	018000H - 01FFFFH
2	32K-WORD	010000H - 017FFFH
1	32K-WORD	008000H - 00FFFFH
0	32K-WORD	000000H - 007FFFH

PLANE0 (UNIFORM PLANE)

6.5 DC Electrical Characteristics for Flash Memory

DC Electrical Characteristics

(TA = -25°C to +85°C, VCC = 2.7V to 3.1V)

Symbol	Parameter	Notes	Min.	Typ.	Max.	Unit	Test Conditions
C _{IN}	Input Capacitance	5			7	pF	V _{IN} = 0V, f = 1MHz, T _A = 25°C
C _{IO}	I/O Capacitance	5			10	pF	V _{I/O} = 0V, f = 1MHz, T _A = 25°C
I _{LI}	Input Leakage Current				±1	µA	V _{IN} = V _{CC} or GND
I _{LO}	Output Leakage Current				±1	µA	V _{OUT} = V _{CC} or GND
I _{CCS}	V _{CC} Standby Current	1, 8		4	20	µA	V _{CC} = V _{CC} Max., F ₁ - <u>CE</u> = <u>RST</u> = V _{CC} ± 0.2V, <u>WP</u> = V _{CC} or GND
I _{CCAS}	V _{CC} Automatic Power Savings Current	1, 4		4	20	µA	V _{CC} = V _{CC} Max., F ₁ - <u>CE</u> = GND ± 0.2V, <u>WP</u> = V _{CC} or GND
I _{CCD}	V _{CC} Reset Power-Down Current	1		4	20	µA	<u>RST</u> = GND ± 0.2V I _{OUT} (RY/ <u>BY</u>) = 0mA
I _{CCR}	Average V _{CC} Read Current Normal Mode	1, 7		15	25	mA	V _{CC} = V _{CC} Max., F ₁ - <u>CE</u> = V _{IL} , F- <u>OE</u> = V _{IH} , f = 5MHz I _{OUT} = 0mA
	Average V _{CC} Read Current Page Mode	8 Word Read	1, 7	5	10	mA	
I _{CCW}	V _{CC} (Page Buffer) Program Current	1, 5, 7		20	60	mA	V _{PP} = V _{PPH}
I _{CCE}	V _{CC} Block Erase, Full Chip Erase Current	1, 5, 7		10	30	mA	V _{PP} = V _{PPH}
I _{CCWS} I _{CCES}	V _{CC} (Page Buffer) Program or Block Erase Suspend Current	1, 2, 7		10	200	µA	F ₁ - <u>CE</u> = V _{IH}
I _{PPS} I _{PPR}	V _{PP} Standby or Read Current	1, 6, 7		2	5	µA	V _{PP} ≤ V _{CC}
I _{PPW}	V _{PP} (Page Buffer) Program Current	1, 5, 6, 7		2	5	µA	V _{PP} = V _{PPH}
I _{PPPE}	V _{PP} Block Erase, Full Chip Erase Current	1, 5, 6, 7		2	5	µA	V _{PP} = V _{PPH}
I _{PPWS}	V _{PP} (Page Buffer) Program Suspend Current	1, 6, 7		2	5	µA	V _{PP} = V _{PPH}
I _{PPES}	V _{PP} Block Erase Suspend Current	1, 6, 7		2	5	µA	V _{PP} = V _{PPH}

DC Electrical Characteristics (Continue)

(T_A = -25°C to +85°C, V_{CC} = 2.7V to 3.1V)

Symbol	Parameter	Notes	Min.	Typ.	Max.	Unit	Test Conditions
V _{IL}	Input Low Voltage	5	-0.3		0.4	V	
V _{IH}	Input High Voltage	5	V _{CC} -0.4		V _{CC} +0.3	V	
V _{OL}	Output Low Voltage	5, 8			0.2V _{CC}	V	I _{OL} = 0.5mA
V _{OH}	Output High Voltage	5	2.2			V	I _{OH} = -0.5mA
V _{PPLK}	V _{PP} Lockout during Normal Operations	3,5,6			0.4	V	
V _{PPH}	V _{PP} during Block Erase, Full Chip Erase, (Page Buffer) Program Operations	6	1.65	3	3.1	V	
V _{LKO}	V _{CC} Lockout Voltage		1.5			V	

Notes:

1. All currents are in RMS unless otherwise noted. Typical values are the reference values at V_{CC} = 3.0V and T_A = +25°C unless V_{CC} is specified.
2. I_{CCWS} and I_{CCES} are specified with the device de-selected. If read or (page buffer) program is executed while in block erase suspend mode, the device's current draw is the sum of I_{CCES} and I_{CCR} or I_{CCW}. If read is executed while in (page buffer) program suspend mode, the device's current draw is the sum of I_{CCWS} and I_{CCR}.
3. Block erase, full chip erase, (page buffer) program are inhibited when V_{PP} ≤ V_{PPLK}, and not guaranteed outside the specified voltage.
4. The Automatic Power Savings (APS) feature automatically places the device in power save mode after read cycle completion. Standard address access timings (t_{AVQV}) provide new data when addresses are changed.
5. Sampled, not 100% tested.
6. V_{PP} is not used for power supply pin. With V_{PP} ≤ V_{PPLK}, block erase, full chip erase, (page buffer) program cannot be executed and should not be attempted.
7. The operating current in dual work is the sum of the operating current (read, erase, program) in each plane.
8. Includes RY/RȲ

6.6 AC Electrical Characteristics for Flash Memory

6.6.1 AC Test Conditions

Input Pulse Level	0 V to 2.7 V
Input Rise and Fall Time	5 ns
Input and Output Timing Ref. level	1.35 V
Output Load	1TTL + C_L (50pF)

6.6.2 Read Cycle

($T_A = -25^\circ\text{C}$ to $+85^\circ\text{C}$, $V_{CC} = 2.7\text{V}$ to 3.1V)

Symbol	Parameter	Notes	Min.	Max.	Unit
t_{AVAV}	Read Cycle Time		65		ns
t_{AVQV}	Address to Output Delay			65	ns
t_{ELQV}	$F_1\text{-}\overline{CE}$ to Output Delay	2		65	ns
t_{APA}	Page Address Access Time			25	ns
t_{GLQV}	$F\text{-}\overline{OE}$ to Output Delay	2		20	ns
t_{PHQV}	\overline{RST} High to Output Delay			150	ns
t_{EHQZ}, t_{GHQZ}	$F_1\text{-}\overline{CE}$ or $F\text{-}\overline{OE}$ to Output in High-Z, Whichever Occurs First	1		20	ns
t_{ELQX}	$F_1\text{-}\overline{CE}$ to Output in Low-Z	1	0		ns
t_{GLQX}	$F\text{-}\overline{OE}$ to Output in Low-Z	1	0		ns
t_{OH}	Output Hold from First Occurring Address, $F_1\text{-}\overline{CE}$ or $F\text{-}\overline{OE}$ Change	1	0		ns
t_{AVEL}, t_{AVGL}	Address Setup to $F_1\text{-}\overline{CE}$ and $F\text{-}\overline{OE}$ Going Low for Reading Status Register	3,5	10		ns
t_{ELAX}, t_{GLAX}	Address Hold from $F_1\text{-}\overline{CE}$ and $F\text{-}\overline{OE}$ Going Low for Reading Status Register	4,5	30		ns
t_{EHEL}, t_{GHGL}	$F_1\text{-}\overline{CE}$ and $F\text{-}\overline{OE}$ Pulse Width High for Reading Status Register	5	15		ns

Notes:

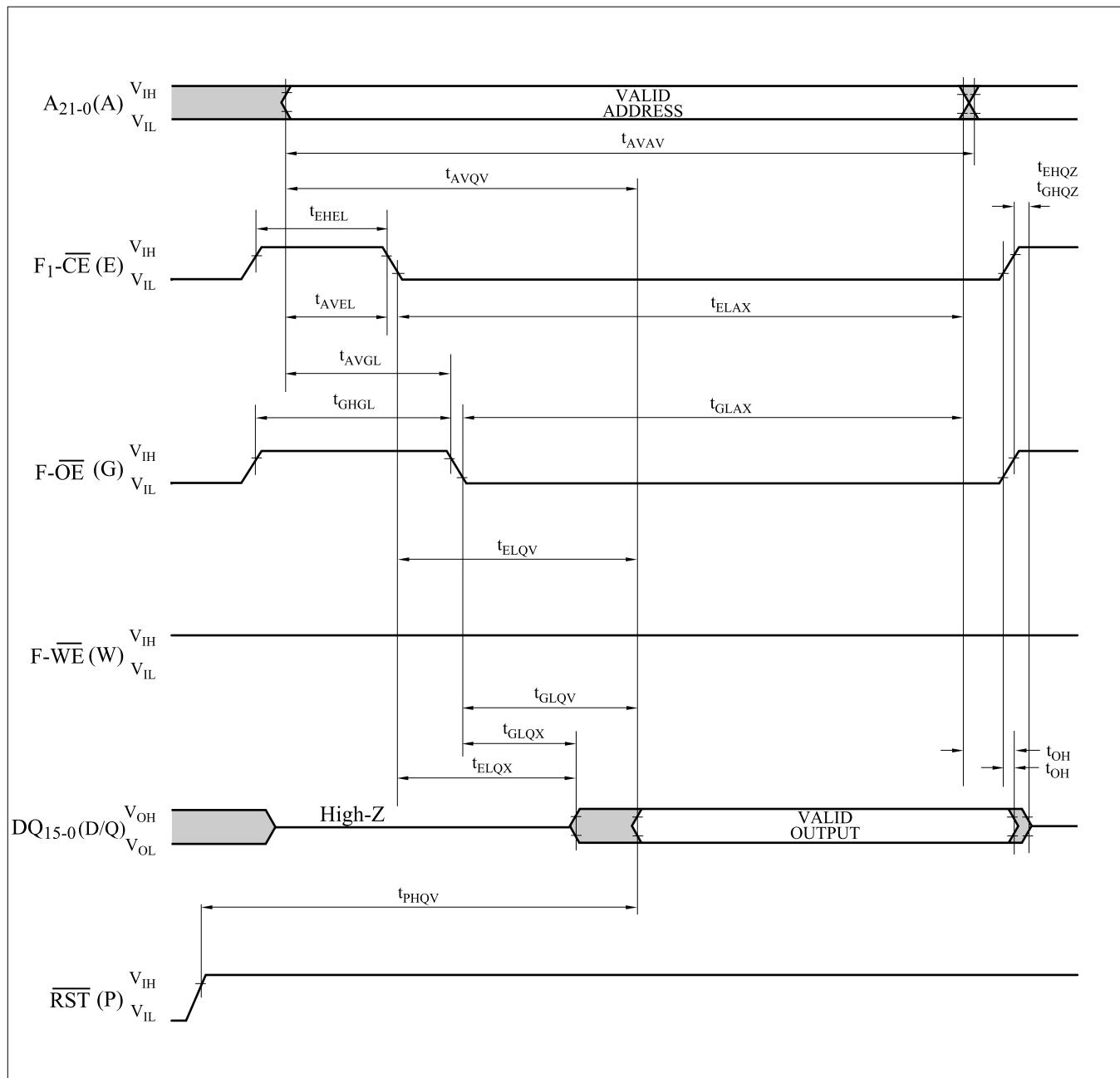
1. Sampled, not 100% tested.
2. $F\text{-}\overline{OE}$ may be delayed up to $t_{ELQV} - t_{GLQV}$ after the falling edge of $F_1\text{-}\overline{CE}$ without impact to t_{ELQV} .
3. Address setup time (t_{AVEL}, t_{AVGL}) is defined from the falling edge of $F_1\text{-}\overline{CE}$ or $F\text{-}\overline{OE}$ (whichever goes low last).
4. Address hold time (t_{ELAX}, t_{GLAX}) is defined from the falling edge of $F_1\text{-}\overline{CE}$ or $F\text{-}\overline{OE}$ (whichever goes low last).
5. Specifications $t_{AVEL}, t_{AVGL}, t_{ELAX}, t_{GLAX}$ and t_{EHEL}, t_{GHGL} for read operations apply to only status register read operations.

6.6.3 Write Cycle (F- \overline{WE} / F₁- \overline{CE} Controlled)^(1,2)(T_A = -25°C to +85°C, V_{CC} = 2.7V to 3.1V)

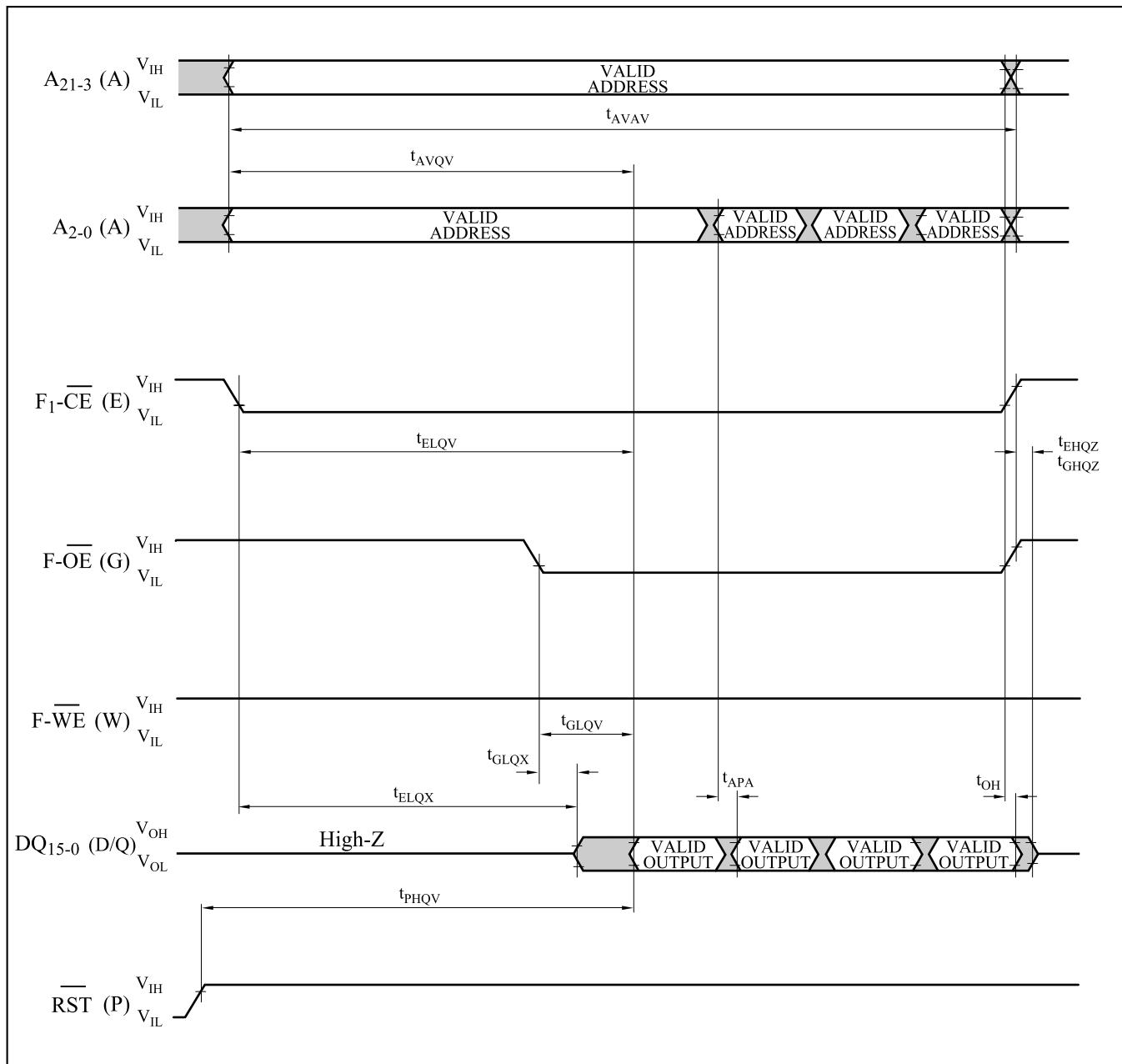
Symbol	Parameter	Notes	Min.	Max.	Unit
t _{AVAV}	Write Cycle Time		65		ns
t _{PHWL} (t _{PHEL})	RST High Recovery to F- \overline{WE} (F ₁ - \overline{CE}) Going Low	3	150		ns
t _{ELWL} (t _{WLEL})	F ₁ - \overline{CE} (F- \overline{WE}) Setup to F- \overline{WE} (F ₁ - \overline{CE}) Going Low		0		ns
t _{WLWH} (t _{ELEH})	F- \overline{WE} (F ₁ - \overline{CE}) Pulse Width	4	50		ns
t _{DVWH} (t _{DVEH})	Data Setup to F- \overline{WE} (F ₁ - \overline{CE}) Going High	8	40		ns
t _{AVWH} (t _{AVEH})	Address Setup to F- \overline{WE} (F ₁ - \overline{CE}) Going High	8	50		ns
t _{WHEH} (t _{EHWL})	F ₁ - \overline{CE} (F- \overline{WE}) Hold from F- \overline{WE} (F ₁ - \overline{CE}) High		0		ns
t _{WHDX} (t _{EHDX})	Data Hold from F- \overline{WE} (F ₁ - \overline{CE}) High		0		ns
t _{WHAX} (t _{EHAX})	Address Hold from F- \overline{WE} (F ₁ - \overline{CE}) High		0		ns
t _{WHWL} (t _{EHEL})	F- \overline{WE} (F ₁ - \overline{CE}) Pulse Width High	5	15		ns
t _{SHWH} (t _{SHEH})	WP High Setup to F- \overline{WE} (F ₁ - \overline{CE}) Going High	3	0		ns
t _{VVWH} (t _{VVEH})	V _{PP} Setup to F- \overline{WE} (F ₁ - \overline{CE}) Going High	3	200		ns
t _{WHGL} (t _{EHGL})	Write Recovery before Read		30		ns
t _{QVSL}	\overline{WP} High Hold from Valid SRD, RY/ \overline{BY} High-Z	3, 6	0		ns
t _{QVVL}	V _{PP} Hold from Valid SRD, RY/ \overline{BY} High-Z	3, 6	0		ns
t _{WHR0} (t _{EHR0})	F- \overline{WE} (F ₁ - \overline{CE}) High to SR.7 Going "0"	3, 7		t _{AVQV} +50	ns
t _{WHRL} (t _{EHRL})	F- \overline{WE} (F ₁ - \overline{CE}) High to RY/ \overline{BY} Going Low	3		100	ns

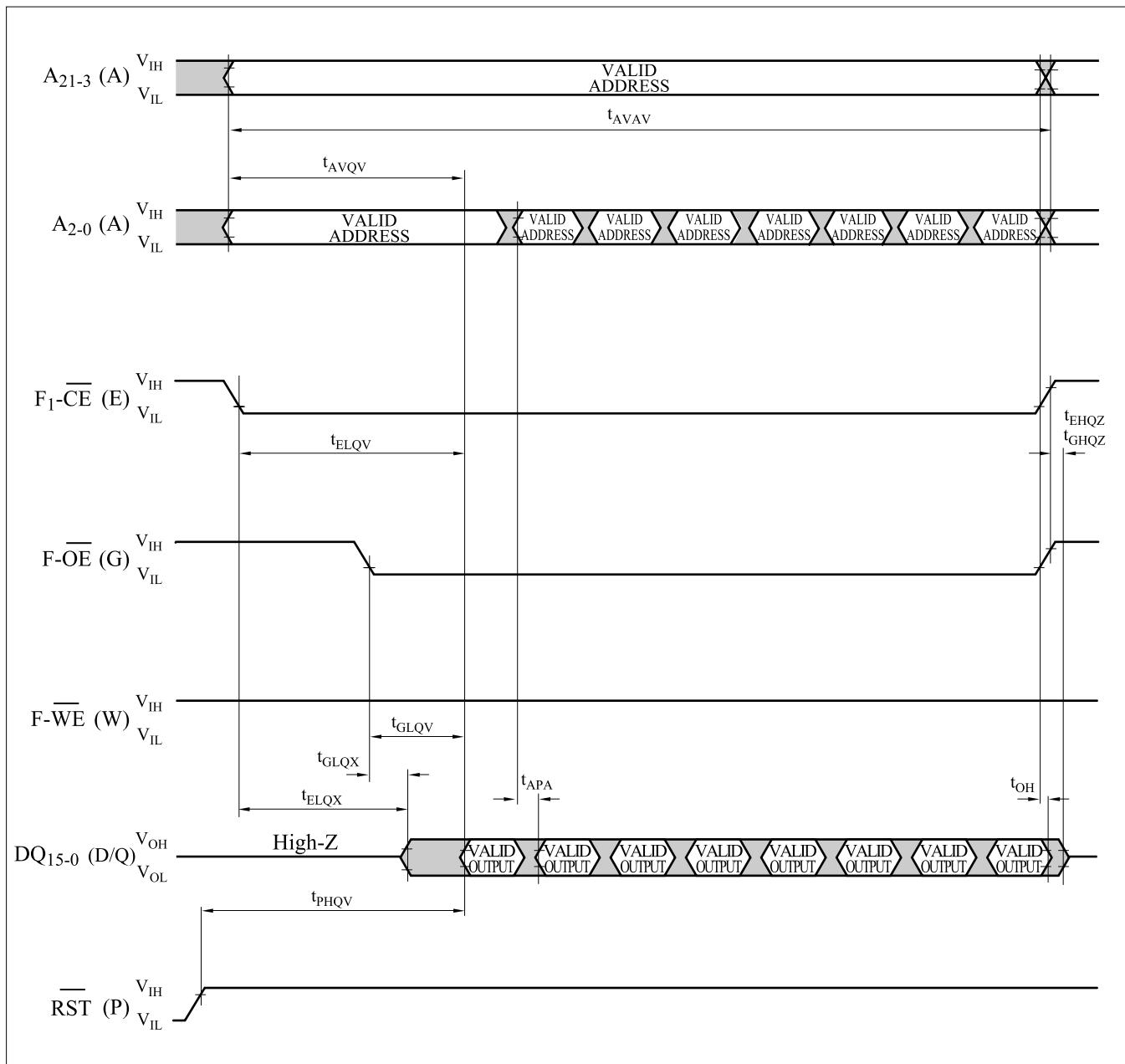
Notes:

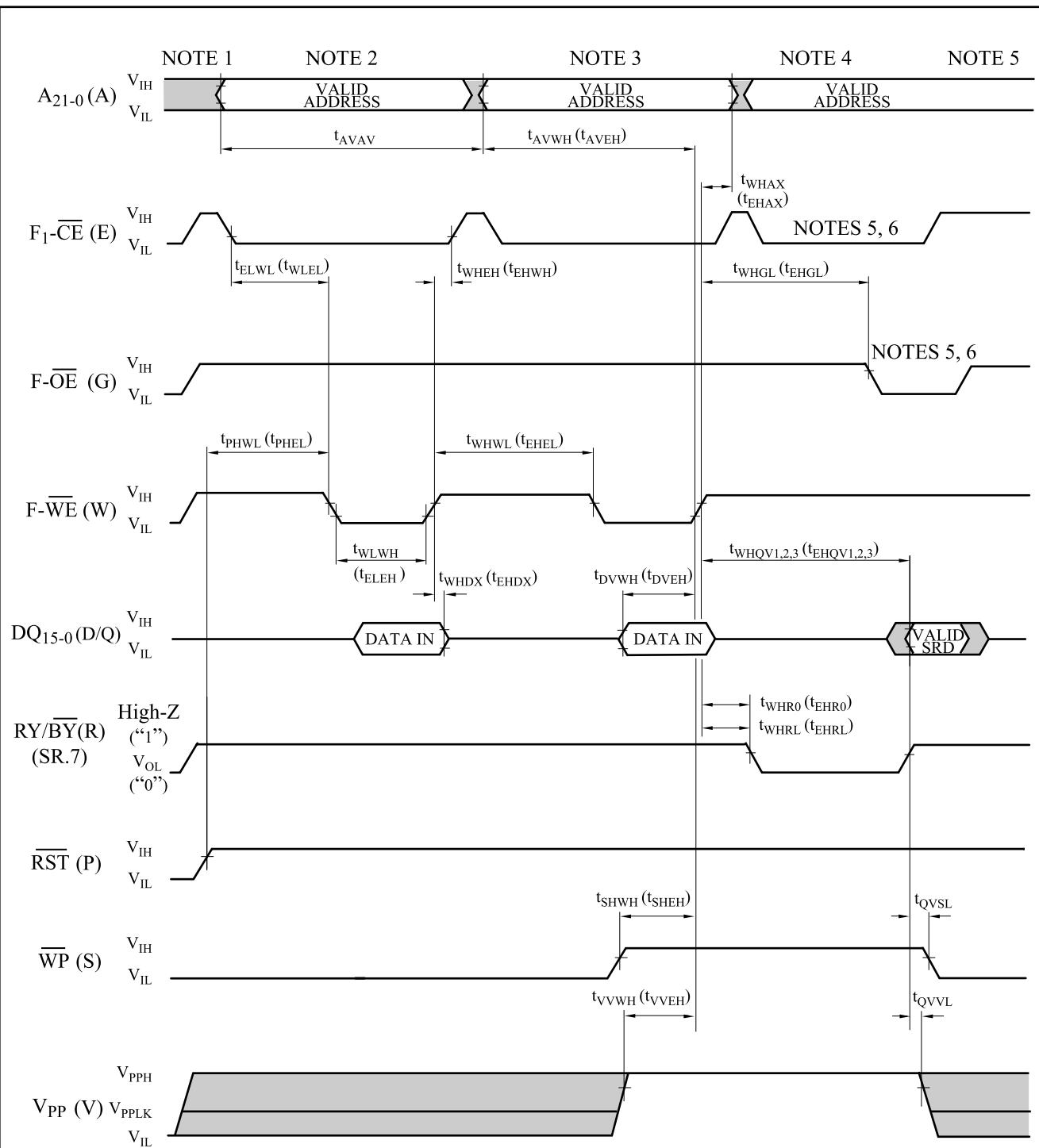
1. The timing characteristics for reading the status register during block erase, full chip erase, (page buffer) program operations are the same as during read-only operations. See the AC Characteristics for read cycle.
2. A write operation can be initiated and terminated with either F₁- \overline{CE} or F- \overline{WE} .
3. Sampled, not 100% tested.
4. Write pulse width (t_{WP}) is defined from the falling edge of F₁- \overline{CE} or F- \overline{WE} (whichever goes low last) to the rising edge of F₁- \overline{CE} or F- \overline{WE} (whichever goes high first). Hence, t_{WP}=t_{WLWH}=t_{ELEH}=t_{WLEH}=t_{ELWH}.
5. Write pulse width high (t_{WPH}) is defined from the rising edge of F₁- \overline{CE} or F- \overline{WE} (whichever goes high first) to the falling edge of F₁- \overline{CE} or F- \overline{WE} (whichever goes low last). Hence, t_{WPH}=t_{WHWL}=t_{EHEL}=t_{WHEL}=t_{EHWL}.
6. V_{PP} should be held at V_{PP}=V_{PPH} until determination of block erase, full chip erase, (page buffer) program success (SR.1/3/4/5=0).
7. t_{WHR0} (t_{EHR0}) after the Read Query or Read Identifier Codes command=t_{AVQV}+100ns.
8. See 6.2.1 Command Definitions for valid address and data for block erase, full chip erase, (page buffer) program or lock bit configuration.


6.6.4 Block Erase, Full Chip Erase, (Page Buffer) Program Performance ⁽³⁾(T_A = -25°C to +85°C, V_{CC} = 2.7V to 3.1V)

Symbol	Parameter	Notes	Page Buffer Command is Used or not Used	V _{PP} =V _{PPH}			Unit
				Min.	Typ. ⁽¹⁾	Max. ⁽²⁾	
t _{WPB}	4K-Word Parameter Block Program Time	2	Not Used		0.05	0.3	s
		2	Used		0.03	0.12	s
t _{WMB}	32K-Word Main Block Program Time	2	Not Used		0.38	2.4	s
		2	Used		0.24	1	s
t _{WHQV1} / t _{EHQV1}	Word Program Time	2	Not Used		11	200	μs
		2	Used		7	100	μs
t _{WHQV2} / t _{EHQV2}	4K-Word Parameter Block Erase Time	2	-		0.3	4	s
t _{WHQV3} / t _{EHQV3}	32K-Word Main Block Erase Time	2	-		0.6	5	s
	Full Chip Erase Time	2			80	700	s
t _{WHRH1} / t _{EHRH1}	(Page Buffer) Program Suspend Latency Time to Read	4	-		5	10	μs
t _{WHRH2} / t _{EHRH2}	Block Erase Suspend Latency Time to Read	4	-		5	20	μs
t _{ERES}	Latency Time from Block Erase Resume Command to Block Erase Suspend Command	5	-	500			μs


Notes:


1. Typical values measured at V_{CC} =3.0V, V_{PP} =3.0V, and T_A=+25°C. Assumes corresponding lock bits are not set. Subject to change based on device characterization.
2. Excludes external system-level overhead.
3. Sampled, but not 100% tested.
4. A latency time is required from writing suspend command (F- \overline{WE} or F₁- \overline{CE} going high) until SR.7 going “1” or RY/ \overline{BY} going High-Z.
5. If the interval time from a Block Erase Resume command to a subsequent Block Erase Suspend command is shorter than t_{ERES} and its sequence is repeated, the block erase operation may not be finished.


6.6.5 Flash Memory AC Characteristics Timing Chart

AC Waveform for Single Asynchronous Read Operations from Status Register, Identifier Codes or Query Code

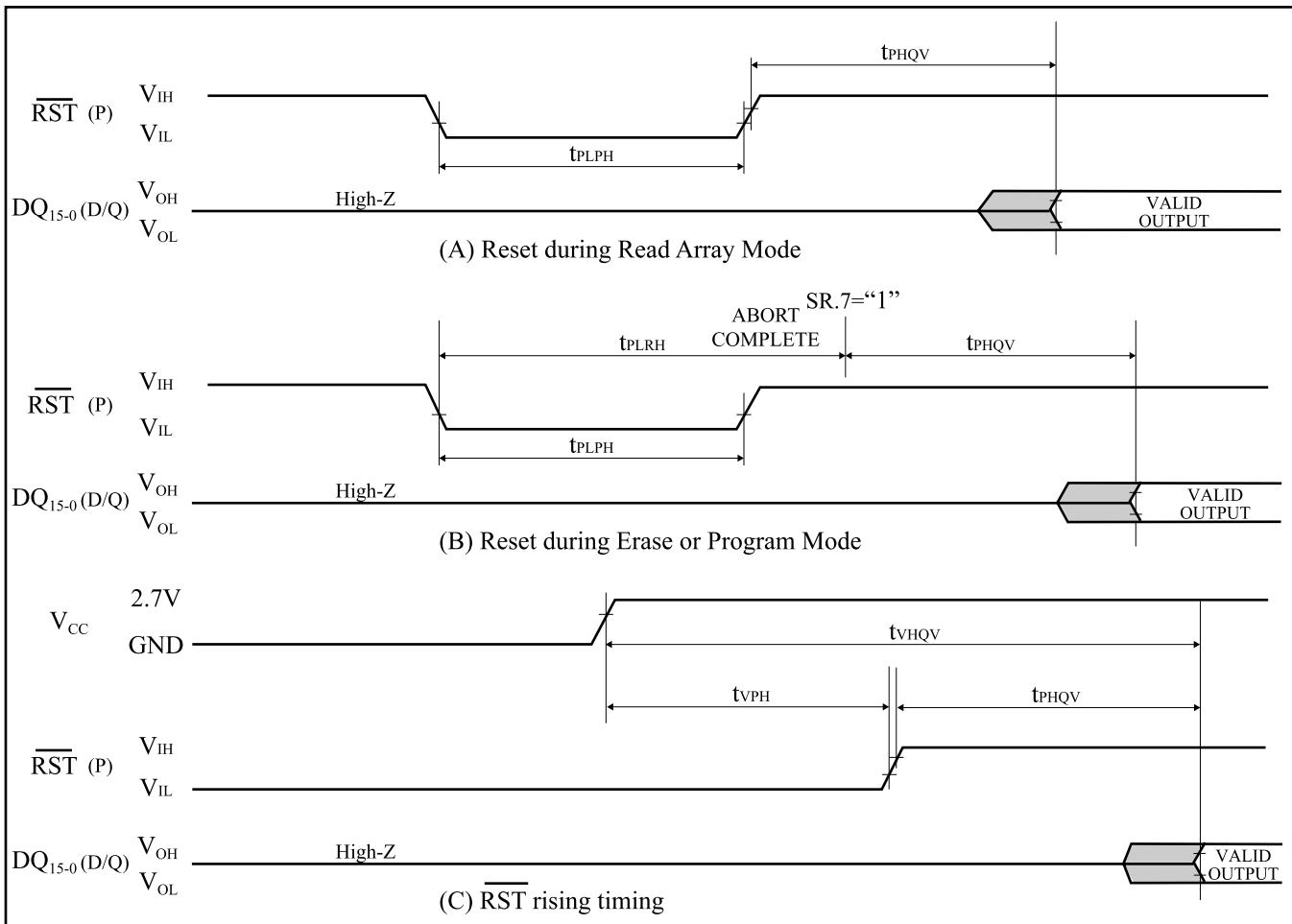
AC Waveform for Asynchronous 4-Word Page Mode Read Operations from Main Blocks or Parameter Blocks

AC Waveform for Asynchronous 8-Word Page Mode Read Operations from Main Blocks or Parameter Blocks

AC Waveform for Write Operations (F- \overline{WE} / F1- \overline{CE} Controlled)

Notes:

1. VCC power-up and standby.
2. Write each first cycle command.
3. Write each second cycle command or valid address and data.
4. Automated erase or program delay.
5. Read status register data.
6. For read operation, F- \overline{OE} and F1- \overline{CE} must be driven active, and F- \overline{WE} de-asserted.


6.6.6 Reset Operations

 $(T_A = -25^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, V_{CC} = 2.7\text{V} \text{ to } 3.1\text{V})$

Symbol	Parameter	Notes	Min.	Max.	Unit
t_{PLPH}	\overline{RST} Low to Reset during Read (\overline{RST} should be low during power-up.)	1, 2, 3	100		ns
t_{PLRH}	\overline{RST} Low to Reset during Erase or Program	1, 3, 4		22	μs
t_{VPH}	$V_{CC} = 2.7\text{V}$ to \overline{RST} High	1, 3, 5	100		ns
t_{VHQV}	$V_{CC} = 2.7\text{V}$ to Output Delay	3		1	ms

Notes:

1. A reset time, t_{PHQV} , is required from the later of SR.7 (RY/ \overline{BY}) going “1” (High-Z) or \overline{RST} going high until outputs are valid. See the AC Characteristics - read cycle for t_{PHQV} .
2. t_{PLPH} is $<100\text{ns}$ the device may still reset but this is not guaranteed.
3. Sampled, not 100% tested.
4. If \overline{RST} asserted while a block erase, full chip erase or (page buffer) program operation is not executing, the reset will complete within 100ns.
5. When the device power-up, holding \overline{RST} low minimum 100ns is required after V_{CC} has been in predefined range and also has been in stable there.

AC Waveform for Reset Operation

7. Flash Memory 2

7.1 Truth Table

7.1.1 Bus Operation ⁽¹⁾

Flash	Notes	F ₂ - <u>CE</u>	<u>RST</u>	F- <u>OE</u>	F- <u>WE</u>	DQ ₀ to DQ ₁₅
Read	3,5	L	H	L	H	(7)
Output Disable	5			H		High - Z
Write	2,3,4,5			L	D _{IN}	
Standby	5	H	H	X	X	High - Z
Reset Power Down	5,6	X	L			

Notes:

1. L = V_{IL}, H = V_{IH}, X = H or L, High-Z = High impedance. Refer to the DC Characteristics.
2. Command writes involving block erase, full chip erase, (page buffer) program are reliably executed when V_{PP} = V_{PPH} and V_{CC} = 2.7V to 3.1V.
Block erase, full chip erase, (page buffer) program with V_{PP} < V_{PPH} (Min.) produce spurious results and should not be attempted.
3. Never hold F-OE low and F-WE low at the same timing.
4. Refer to Section 7.2 Command Definitions for Flash Memory valid D_{IN} during a write operation.
5. WP set to V_{IL} or V_{IH}.
6. Electricity consumption of Flash Memory is lowest when RST = GND $\pm 0.2V$.

7. Flash Read Mode

Mode	Address	DQ ₀ to DQ ₁₅
Read Array	X	D _{OUT}
Read Identifier Codes	See 7.2.2	See 7.2.2
Read Query	Refer to the Appendix	Refer to the Appendix

7.1.2 Simultaneous Operation Modes Allowed with Four Planes ^(1,2)

IF ONE PARTITION IS:	THEN THE MODES ALLOWED IN THE OTHER PARTITION IS:									
	Read Array	Read ID	Read Status	Read Query	Word Program	Page Buffer Program	Block Erase	Full Chip Erase	Program Suspend	Block Erase Suspend
Read Array	X	X	X	X	X	X	X		X	X
Read ID	X	X	X	X	X	X	X		X	X
Read Status	X	X	X	X	X	X	X	X	X	X
Read Query	X	X	X	X	X	X	X		X	X
Word Program	X	X	X	X						X
Page Buffer Program	X	X	X	X						X
Block Erase	X	X	X	X						
Full Chip Erase			X							
Program Suspend	X	X	X	X						X
Block Erase Suspend	X	X	X	X	X	X			X	

Notes:

1. "X" denotes the operation available.

2. Configurative Partition Dual Work Restrictions:

Status register reflects partition state, not WSM (Write State Machine) state - this allows a status register for each partition.

Only one partition can be erased or programmed at a time - no command queuing.

Commands must be written to an address within the block targeted by that command.

7.2 Command Definitions for Flash Memory⁽¹¹⁾

7.2.1 Command Definitions

Command	Bus Cycles Req'd	Notes	First Bus Cycle			Second Bus Cycle		
			Oper ⁽¹⁾	Address ⁽²⁾	Data	Oper ⁽¹⁾	Address ⁽²⁾	Data ⁽³⁾
Read Array	1		Write	PA	FFH			
Read Identifier Codes	≥ 2	4	Write	PA	90H	Read	IA	ID
Read Query	≥ 2	4	Write	PA	98H	Read	QA	QD
Read Status Register	2		Write	PA	70H	Read	PA	SRD
Clear Status Register	1		Write	PA	50H			
Block Erase	2	5	Write	BA	20H	Write	BA	D0H
Full Chip Erase	2	5, 9	Write	X	30H	Write	X	D0H
Program	2	5, 6	Write	WA	40H or 10H	Write	WA	WD
Page Buffer Program	≥ 4	5, 7	Write	WA	E8H	Write	WA	N-1
Block Erase and (Page Buffer) Program Suspend	1	8, 9	Write	PA	B0H			
Block Erase and (Page Buffer) Program Resume	1	8, 9	Write	PA	D0H			
Set Block Lock Bit	2		Write	BA	60H	Write	BA	01H
Clear Block Lock Bit	2	10	Write	BA	60H	Write	BA	D0H
Set Block Lock-down Bit	2		Write	BA	60H	Write	BA	2FH
Set Partition Configuration Register	2		Write	PCRC	60H	Write	PCRC	04H

Notes:

1. Bus operations are defined in 7.1.1 Bus Operation.
2. All addresses which are written at the first bus cycle should be the same as the addresses which are written at the second bus cycle.

X=Any valid address within the device.

PA=Address within the selected partition.

IA=Identifier codes address (See 7.2.2 Identifier Codes for Read Operation).

QA=Query codes address. Refer to the LH28F320BF, LH28F640BF, LH28F128BF series Appendix for details.

BA=Address within the block being erased, set/cleared block lock bit or set block lock-down bit.

WA=Address of memory location for the Program command or the first address for the Page Buffer Program command.

PCRC=Partition configuration register code presented on the address A₀-A₁₅.

3. ID=Data read from identifier codes (See 7.2.2 Identifier Codes for Read Operation).

QD=Data read from query database. Refer to the LH28F320BF, LH28F640BF, LH28F128BF series Appendix for details.

SRD=Data read from status register. See 7.3 Register Definition for a description of the status register bits.

WD=Data to be programmed at location WA. Data is latched on the rising edge of F-W_E or F₂-C_E (whichever goes high first) during command write cycles.

N-1=N is the number of the words to be loaded into a page buffer.

4. Following the Read Identifier Codes command, read operations access manufacturer code, device code, block lock configuration code, partition configuration register code (See 7.2.2 Identifier Codes for Read Operation).

The Read Query command is available for reading CFI (Common Flash Interface) information.

5. Block erase, full chip erase or (page buffer) program cannot be executed when the selected block is locked. Unlocked block can be erased or programmed when RST is V_{IH}.

6. Either 40H or 10H are recognized by the CUI (Command User Interface) as the program setup.

7. Following the third bus cycle, input the program sequential address and write data of “N” times. Finally, input the any valid address within the target block to be programmed and the confirm command (D0H). Refer to the LH28F320BF, LH28F640BF, LH28F128BF series Appendix for details.

8. If the program operation in one partition is suspended and the erase operation in other partition is also suspended, the suspended program operation should be resumed first, and then the suspended erase operation should be resumed next.
9. Full chip erase operation can not be suspended.
10. Following the Clear Block Lock Bit command, block which is not locked-down is unlocked when \overline{WP} is V_{IL} . When \overline{WP} is V_{IH} , lock-down bit is disabled and the selected block is unlocked regardless of lock-down configuration.
11. Commands other than those shown above are reserved by SHARP for future device implementations and should not be used.

7.2.2 Identifier Codes for Read Operation

	Code	Address [A ₁₅ -A ₀]	Data [DQ ₁₅ -DQ ₀]	Notes
Manufacturer Code	Manufacturer Code	0000H	00B0H	4
Device Code	64M (x16) Top Parameter Device Code	0001H	00B0H	1, 4
Block Lock Configuration Code	Block is Unlocked	Block Address + 2	DQ ₀ = 0	2
	Block is Locked		DQ ₀ = 1	2
	Block is not Locked-Down		DQ ₁ = 0	2
	Block is Locked-Down		DQ ₁ = 1	2
Device Configuration Code	Partition Configuration Register	0006H	PCRC	3, 4

Notes:

1. Top parameter device has its parameter blocks in the plane 3 (The highest address).
2. Block Address = The beginning location of a block address within the partition to which the Read Identifier Codes command (90H) has been written.
DQ₁₅-DQ₂ is reserved for future implementation.
3. PCRC = Partition Configuration Register Code.
4. The address A₂₁-A₁₆ are shown in below table for reading the manufacturer, device, device configuration code.
The address to read the identifier codes is dependent on the partition which is selected when writing the Read Identifier Codes command (90H).

See Section 7.3 Partition Configuration Register Definition (P.38) for the partition configuration register.

Identifier Codes for Read Operation on Partition Configuration (64M (x16)-bit device)

Partition Configuration Register			Address (64M (x16)-bit device)
PCR.10	PCR.9	PCR.8	[A ₂₁ -A ₁₆]
0	0	0	00H
0	0	1	00H or 10H
0	1	0	00H or 20H
1	0	0	00H or 30H
0	1	1	00H or 10H or 20H
1	1	0	00H or 20H or 30H
1	0	1	00H or 10H or 30H
1	1	1	00H or 10H or 20H or 30H

7.2.3 Functions of Block Lock and Block Lock-Down

Current State					Erase/Program Allowed ⁽²⁾
State	\overline{WP}	$DQ_1^{(1)}$	$DQ_0^{(1)}$	State Name	
[000]	0	0	0	Unlocked	Yes
[001] ⁽³⁾	0	0	1	Locked	No
[011]	0	1	1	Locked-down	No
[100]	1	0	0	Unlocked	Yes
[101] ⁽³⁾	1	0	1	Locked	No
[110] ⁽⁴⁾	1	1	0	Lock-down Disable	Yes
[111]	1	1	1	Lock-down Disable	No

Notes:

1. $DQ_0 = 1$: a block is locked; $DQ_0 = 0$: a block is unlocked.
 $DQ_1 = 1$: a block is locked-down; $DQ_1 = 0$: a block is not locked-down.
2. Erase and program are general terms, respectively, to express: block erase, full chip erase and (page buffer) program operations.
3. At power-up or device reset, all blocks default to locked state and are not locked-down, that is, [001] ($\overline{WP} = 0$) or [101] ($\overline{WP} = 1$), regardless of the states before power-off or reset operation.
4. When \overline{WP} is driven to V_{IL} in [110] state, the state changes to [011] and the blocks are automatically locked.

7.2.4 Block Locking State Transitions upon Command Write ⁽⁴⁾

Current State				Result after Lock Command Written (Next State)		
State	\overline{WP}	DQ_1	DQ_0	Set Lock ⁽¹⁾	Clear Lock ⁽¹⁾	Set Lock-down ⁽¹⁾
[000]	0	0	0	[001]	No Change	[011] ⁽²⁾
[001]	0	0	1	No Change ⁽³⁾	[000]	[011]
[011]	0	1	1	No Change	No Change	No Change
[100]	1	0	0	[101]	No Change	[111] ⁽²⁾
[101]	1	0	1	No Change	[100]	[111]
[110]	1	1	0	[111]	No Change	[111] ⁽²⁾
[111]	1	1	1	No Change	[110]	No Change

Notes:

1. “Set Lock” means Set Block Lock Bit command, “Clear Lock” means Clear Block Lock Bit command and “Set Lock-down” means Set Block Lock-Down Bit command.
2. When the Set Block Lock-Down Bit command is written to the unlocked block ($DQ_0 = 0$), the corresponding block is locked-down and automatically locked at the same time.
3. “No Change” means that the state remains unchanged after the command written.
4. In this state transitions table, assumes that \overline{WP} is not changed and fixed V_{IL} or V_{IH} .

7.2.5 Block Locking State Transitions upon \overline{WP} Transition ⁽⁴⁾

Previous State	Current State				Result after \overline{WP} Transition (Next State)	
	State	\overline{WP}	DQ ₁	DQ ₀	$\overline{WP} = 0 \rightarrow 1$ ⁽¹⁾	$\overline{WP} = 1 \rightarrow 0$ ⁽¹⁾
-	[000]	0	0	0	[100]	-
-	[001]	0	0	1	[101]	-
[110] ⁽²⁾	[011]	0	1	1	[110]	-
Other than [110] ⁽²⁾					[111]	-
-	[100]	1	0	0	-	[000]
-	[101]	1	0	1	-	[001]
-	[110]	1	1	0	-	[011] ⁽³⁾
-	[111]	1	1	1	-	[011]

Notes:

1. “ $\overline{WP} = 0 \rightarrow 1$ ” means that \overline{WP} is driven to V_{IH} and “ $\overline{WP} = 1 \rightarrow 0$ ” means that \overline{WP} is driven to V_{IL} .
2. State transition from the current state [011] to the next state depends on the previous state.
3. When \overline{WP} is driven to V_{IL} in [110] state, the state changes to [011] and the blocks are automatically locked.
4. In this state transitions table, assumes that lock configuration commands are not written in previous, current and next state.

7.3 Register Definition

Status Register Definition

R	R	R	R	R	R	R	R
15	14	13	12	11	10	9	8
WSMS	BESS	BEFCES	PBPS	VPPS	PBPSS	DPS	R
7	6	5	4	3	2	1	0

SR.15 - SR.8 = RESERVED FOR FUTURE ENHANCEMENTS (R)	Notes: Status Register indicates the status of the partition, not WSM (Write State Machine). Even if the SR.7 is "1", the WSM may be occupied by the other partition when the device is set to 2, 3 or 4 partitions configuration.
SR.7 = WRITE STATE MACHINE STATUS (WSMS) 1 = Ready 0 = Busy	
SR.6 = BLOCK ERASE SUSPEND STATUS (BESS) 1 = Block Erase Suspended 0 = Block Erase in Progress/Completed	Check SR.7 or RY/BY to determine block erase, full chip erase, (page buffer) program completion. SR.6 - SR.1 are invalid while SR.7="0".
SR.5 = BLOCK ERASE AND FULL CHIP ERASE STATUS (BEFCES) 1 = Error in Block Erase or Full Chip Erase 0 = Successful Block Erase or Full Chip Erase	If both SR.5 and SR.4 are "1"s after a block erase, full chip erase, (page buffer) program, set/clear block lock bit, set block lock-down bit or set partition configuration register attempt, an improper command sequence was entered.
SR.4 = (PAGE BUFFER) PROGRAM STATUS (PBPS) 1 = Error in (Page Buffer) Program 0 = Successful (Page Buffer) Program	SR.3 does not provide a continuous indication of V _{PP} level. The WSM interrogates and indicates the V _{PP} level only after Block Erase, Full Chip Erase, (Page Buffer) Program command sequences. SR.3 is not guaranteed to report accurate feedback when V _{PP} ≠V _{PPH} or V _{PPLK} .
SR.3 = V _{PP} STATUS (VPPS) 1 = V _{PP} LOW Detect, Operation Abort 0 = V _{PP} OK	
SR.2 = (PAGE BUFFER) PROGRAM SUSPEND STATUS (PBPSS) 1 = (Page Buffer) Program Suspended 0 = (Page Buffer) Program in Progress/Completed	SR.1 does not provide a continuous indication of block lock bit. The WSM interrogates the block lock bit only after Block Erase, Full Chip Erase, (Page Buffer) Program command sequences. It informs the system, depending on the attempted operation, if the block lock bit is set. Reading the block lock configuration codes after writing the Read Identifier Codes command indicates block lock bit status.
SR.1 = DEVICE PROTECT STATUS (DPS) 1 = Erase or Program Attempted on a Locked Block, Operation Abort 0 = Unlocked	
SR.0 =RESERVED FOR FUTURE ENHANCEMENTS (R)	SR.15 - SR.8 and SR.0 are reserved for future use and should be masked out when polling the status register.

Extended Status Register Definition

R	R	R	R	R	R	R	R	R
15	14	13	12	11	10	9	8	
SMS	R	R	R	R	R	R	R	R
7	6	5	4	3	2	1	0	

XSR.15-8 = RESERVED FOR FUTURE ENHANCEMENTS (R)

XSR.7 = STATE MACHINE STATUS (SMS)

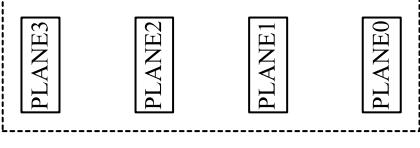
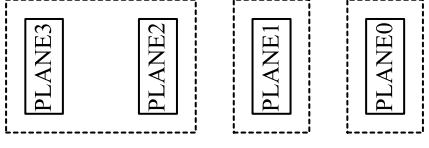
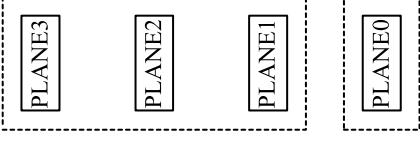
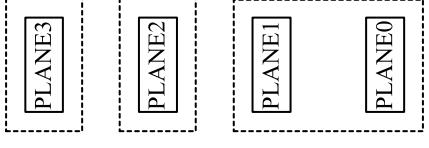
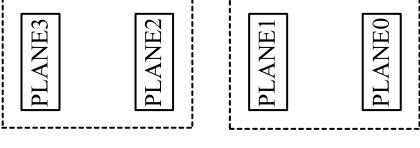
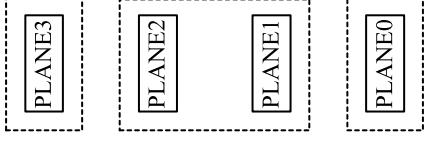
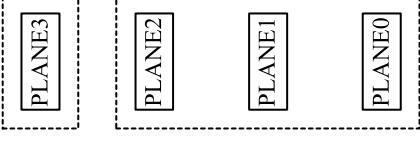
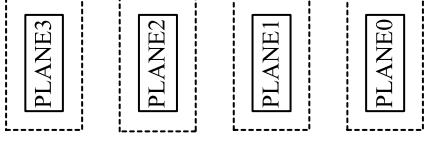
1 = Page Buffer Program available

0 = Page Buffer Program not available

XSR.6-0 = RESERVED FOR FUTURE ENHANCEMENTS (R)

Notes:

After issue a Page Buffer Program command (E8H), XSR.7="1" indicates that the entered command is accepted. If XSR.7 is "0", the command is not accepted and a next Page Buffer Program command (E8H) should be issued again to check if page buffer is available or not.









XSR.15-8 and XSR.6-0 are reserved for future use and should be masked out when polling the extended status register.

Partition Configuration Register Definition

R	R	R	R	R	PC2	PC1	PC0
15	14	13	12	11	10	9	8
R	R	R	R	R	R	R	R
7	6	5	4	3	2	1	0

PCR.15-11 = RESERVED FOR FUTURE ENHANCEMENTS (R)	111 = There are four partitions in this configuration. Each plane corresponds to each partition respectively. Dual work operation is available between any two partitions.
PCR.10-8 = PARTITION CONFIGURATION (PC2-0)	PCR.7-0 = RESERVED FOR FUTURE ENHANCEMENTS (R)
000 = No partitioning. Dual Work is not allowed.	
001 = Plane1-3 are merged into one partition. (default in a bottom parameter device)	
010 = Plane 0-1 and Plane 2-3 are merged into one partition respectively.	
100 = Plane 0-2 are merged into one partition. (default in a top parameter device)	
011 = Plane 2-3 are merged into one partition. There are three partitions in this configuration. Dual work operation is available between any two partitions.	Notes: After power-up or device reset, PCR 10-8 (PC2-0) is set to "001" in a bottom parameter device and "100" in a top parameter device.
110 = Plane 0-1 are merged into one partition. There are three partitions in this configuration. Dual work operation is available between any two partitions.	
101 = Plane 1-2 are merged into one partition. There are three partitions in this configuration. Dual work operation is available between any two partitions.	See the table below for more details.
	PCR.15-11 and PCR.7-0 are reserved for future use and should be masked out when checking the partition configuration register.

Partition Configuration

PC2 PC1 PC0	PARTITIONING FOR DUAL WORK	PC2 PC1 PC0	PARTITIONING FOR DUAL WORK
0 0 0	PARTITION0 	0 1 1	PARTITION2 PARTITION1 PARTITION0
0 0 1	PARTITION1 PARTITION0 	1 1 0	PARTITION2 PARTITION1 PARTITION0
0 1 0	PARTITION1 PARTITION0 	1 0 1	PARTITION2 PARTITION1 PARTITION0
1 0 0	PARTITION1 PARTITION0 	1 1 1	PARTITION3 PARTITION2 PARTITION1 PARTITION0

7.4 Memory Map for Flash Memory

Top Parameter

BLOCK NUMBER ADDRESS RANGE

134	4K-WORD	3FF000H - 3FFFFFFH
133	4K-WORD	3FE000H - 3FEFFFFH
132	4K-WORD	3FD000H - 3FDFFFFH
131	4K-WORD	3FC000H - 3FCFFFFH
130	4K-WORD	3FB000H - 3FBFFFFH
129	4K-WORD	3FA000H - 3FAFFFFH
128	4K-WORD	3F9000H - 3F9FFFFH
127	4K-WORD	3F8000H - 3F8FFFFH
126	32K-WORD	3F0000H - 3F7FFFFH
125	32K-WORD	3E8000H - 3E7FFFFH
124	32K-WORD	3E0000H - 3E7FFFFH
123	32K-WORD	3D8000H - 3D7FFFFH
122	32K-WORD	3D0000H - 3D7FFFFH
121	32K-WORD	3C8000H - 3C7FFFFH
120	32K-WORD	3C0000H - 3C7FFFFH
119	32K-WORD	3B8000H - 3B7FFFFH
118	32K-WORD	3B0000H - 3B7FFFFH
117	32K-WORD	3A8000H - 3AFFFFH
116	32K-WORD	3A0000H - 3A7FFFFH
115	32K-WORD	398000H - 39FFFFH
114	32K-WORD	390000H - 397FFFFH
113	32K-WORD	388000H - 38FFFFH
112	32K-WORD	380000H - 387FFFFH
111	32K-WORD	378000H - 37FFFFH
110	32K-WORD	370000H - 377FFFFH
109	32K-WORD	368000H - 367FFFFH
108	32K-WORD	360000H - 367FFFFH
107	32K-WORD	358000H - 357FFFFH
106	32K-WORD	350000H - 357FFFFH
105	32K-WORD	348000H - 347FFFFH
104	32K-WORD	340000H - 347FFFFH
103	32K-WORD	338000H - 337FFFFH
102	32K-WORD	330000H - 337FFFFH
101	32K-WORD	328000H - 327FFFFH
100	32K-WORD	320000H - 327FFFFH
99	32K-WORD	318000H - 31FFFFH
98	32K-WORD	310000H - 317FFFFH
97	32K-WORD	308000H - 307FFFFH
96	32K-WORD	300000H - 307FFFFH

BLOCK NUMBER ADDRESS RANGE

63	32K-WORD	1F8000H - 1FFFFFFH
62	32K-WORD	1F0000H - 1F7FFFFH
61	32K-WORD	1E8000H - 1E7FFFFH
60	32K-WORD	1E0000H - 1E7FFFFH
59	32K-WORD	1D8000H - 1D7FFFFH
58	32K-WORD	1D0000H - 1D7FFFFH
57	32K-WORD	1C8000H - 1C7FFFFH
56	32K-WORD	1C0000H - 1C7FFFFH
55	32K-WORD	1B8000H - 1B7FFFFH
54	32K-WORD	1B0000H - 1B7FFFFH
53	32K-WORD	1A8000H - 1A7FFFFH
52	32K-WORD	1A0000H - 1A7FFFFH
51	32K-WORD	198000H - 19FFFFH
50	32K-WORD	190000H - 197FFFFH
49	32K-WORD	188000H - 18FFFFH
48	32K-WORD	180000H - 187FFFFH
47	32K-WORD	178000H - 17FFFFH
46	32K-WORD	170000H - 177FFFFH
45	32K-WORD	168000H - 167FFFFH
44	32K-WORD	160000H - 167FFFFH
43	32K-WORD	158000H - 157FFFFH
42	32K-WORD	150000H - 157FFFFH
41	32K-WORD	148000H - 147FFFFH
40	32K-WORD	140000H - 147FFFFH
39	32K-WORD	138000H - 137FFFFH
38	32K-WORD	130000H - 137FFFFH
37	32K-WORD	128000H - 127FFFFH
36	32K-WORD	120000H - 127FFFFH
35	32K-WORD	118000H - 117FFFFH
34	32K-WORD	110000H - 117FFFFH
33	32K-WORD	108000H - 107FFFFH
32	32K-WORD	100000H - 107FFFFH

PLANE3 (PARAMETER PLANE)

95	32K-WORD	2F8000H - 2FFFFFFH
94	32K-WORD	2F0000H - 2F7FFFFH
93	32K-WORD	2E8000H - 2E7FFFFH
92	32K-WORD	2E0000H - 2E7FFFFH
91	32K-WORD	2D8000H - 2D7FFFFH
90	32K-WORD	2D0000H - 2D7FFFFH
89	32K-WORD	2C8000H - 2C7FFFFH
88	32K-WORD	2C0000H - 2C7FFFFH
87	32K-WORD	2B8000H - 2B7FFFFH
86	32K-WORD	2B0000H - 2B7FFFFH
85	32K-WORD	2A8000H - 2A7FFFFH
84	32K-WORD	2A0000H - 2A7FFFFH
83	32K-WORD	298000H - 297FFFFH
82	32K-WORD	290000H - 297FFFFH
81	32K-WORD	288000H - 287FFFFH
80	32K-WORD	280000H - 287FFFFH
79	32K-WORD	278000H - 277FFFFH
78	32K-WORD	270000H - 277FFFFH
77	32K-WORD	268000H - 267FFFFH
76	32K-WORD	260000H - 267FFFFH
75	32K-WORD	258000H - 257FFFFH
74	32K-WORD	250000H - 257FFFFH
73	32K-WORD	248000H - 247FFFFH
72	32K-WORD	240000H - 247FFFFH
71	32K-WORD	238000H - 237FFFFH
70	32K-WORD	230000H - 237FFFFH
69	32K-WORD	228000H - 227FFFFH
68	32K-WORD	220000H - 227FFFFH
67	32K-WORD	218000H - 217FFFFH
66	32K-WORD	210000H - 217FFFFH
65	32K-WORD	208000H - 207FFFFH
64	32K-WORD	200000H - 207FFFFH

PLANE0 (UNIFORM PLANE)

31	32K-WORD	0F8000H - 0FFFFFFH
30	32K-WORD	0F0000H - 0F7FFFFH
29	32K-WORD	0E8000H - 0E7FFFFH
28	32K-WORD	0E0000H - 0E7FFFFH
27	32K-WORD	0D8000H - 0D7FFFFH
26	32K-WORD	0D0000H - 0D7FFFFH
25	32K-WORD	0C8000H - 0C7FFFFH
24	32K-WORD	0C0000H - 0C7FFFFH
23	32K-WORD	0B8000H - 0B7FFFFH
22	32K-WORD	0B0000H - 0B7FFFFH
21	32K-WORD	0A8000H - 0A7FFFFH
20	32K-WORD	0A0000H - 0A7FFFFH
19	32K-WORD	098000H - 097FFFFH
18	32K-WORD	090000H - 097FFFFH
17	32K-WORD	088000H - 087FFFFH
16	32K-WORD	080000H - 087FFFFH
15	32K-WORD	078000H - 077FFFFH
14	32K-WORD	070000H - 077FFFFH
13	32K-WORD	068000H - 067FFFFH
12	32K-WORD	060000H - 067FFFFH
11	32K-WORD	058000H - 057FFFFH
10	32K-WORD	050000H - 057FFFFH
9	32K-WORD	048000H - 047FFFFH
8	32K-WORD	040000H - 047FFFFH
7	32K-WORD	038000H - 037FFFFH
6	32K-WORD	030000H - 037FFFFH
5	32K-WORD	028000H - 027FFFFH
4	32K-WORD	020000H - 027FFFFH
3	32K-WORD	018000H - 017FFFFH
2	32K-WORD	010000H - 017FFFFH
1	32K-WORD	008000H - 007FFFFH
0	32K-WORD	000000H - 007FFFFH

7.5 DC Electrical Characteristics for Flash Memory

DC Electrical Characteristics

(TA = -25°C to +85°C, VCC = 2.7V to 3.1V)

Symbol	Parameter	Notes	Min.	Typ.	Max.	Unit	Test Conditions
C _{IN}	Input Capacitance	5			7	pF	V _{IN} = 0V, f = 1MHz, T _A = 25°C
C _{IO}	I/O Capacitance	5			10	pF	V _{I/O} = 0V, f = 1MHz, T _A = 25°C
I _{LI}	Input Leakage Current				±1	µA	V _{IN} = V _{CC} or GND
I _{LO}	Output Leakage Current				±1	µA	V _{OUT} = V _{CC} or GND
I _{CCS}	V _{CC} Standby Current	1, 8		4	20	µA	V _{CC} = V _{CC} Max., F ₂ - <u>CE</u> = <u>RST</u> = V _{CC} ± 0.2V, <u>WP</u> = V _{CC} or GND
I _{CCAS}	V _{CC} Automatic Power Savings Current	1, 4		4	20	µA	V _{CC} = V _{CC} Max., F ₂ - <u>CE</u> = GND ± 0.2V, <u>WP</u> = V _{CC} or GND
I _{CCD}	V _{CC} Reset Power-Down Current	1		4	20	µA	<u>RST</u> = GND ± 0.2V I _{OUT} (RY/ <u>BY</u>) = 0mA
I _{CCR}	Average V _{CC} Read Current Normal Mode	1, 7		15	25	mA	V _{CC} = V _{CC} Max., F ₂ - <u>CE</u> = V _{IL} , F- <u>OE</u> = V _{IH} , f = 5MHz I _{OUT} = 0mA
	Average V _{CC} Read Current Page Mode	8 Word Read	1, 7	5	10	mA	
I _{CCW}	V _{CC} (Page Buffer) Program Current	1, 5, 7		20	60	mA	V _{PP} = V _{PPH}
I _{CCE}	V _{CC} Block Erase, Full Chip Erase Current	1, 5, 7		10	30	mA	V _{PP} = V _{PPH}
I _{CCWS} I _{CCES}	V _{CC} (Page Buffer) Program or Block Erase Suspend Current	1, 2, 7		10	200	µA	F ₂ - <u>CE</u> = V _{IH}
I _{PPS} I _{PPR}	V _{PP} Standby or Read Current	1, 6, 7		2	5	µA	V _{PP} ≤ V _{CC}
I _{PPW}	V _{PP} (Page Buffer) Program Current	1, 5, 6, 7		2	5	µA	V _{PP} = V _{PPH}
I _{PPPE}	V _{PP} Block Erase, Full Chip Erase Current	1, 5, 6, 7		2	5	µA	V _{PP} = V _{PPH}
I _{PPWS}	V _{PP} (Page Buffer) Program Suspend Current	1, 6, 7		2	5	µA	V _{PP} = V _{PPH}
I _{PPES}	V _{PP} Block Erase Suspend Current	1, 6, 7		2	5	µA	V _{PP} = V _{PPH}

DC Electrical Characteristics (Continue)

(T_A = -25°C to +85°C, V_{CC} = 2.7V to 3.1V)

Symbol	Parameter	Notes	Min.	Typ.	Max.	Unit	Test Conditions
V _{IL}	Input Low Voltage	5	-0.3		0.4	V	
V _{IH}	Input High Voltage	5	V _{CC} -0.4		V _{CC} +0.3	V	
V _{OL}	Output Low Voltage	5, 8			0.2V _{CC}	V	I _{OL} = 0.5mA
V _{OH}	Output High Voltage	5	2.2			V	I _{OH} = -0.5mA
V _{PPLK}	V _{PP} Lockout during Normal Operations	3,5,6			0.4	V	
V _{PPH}	V _{PP} during Block Erase, Full Chip Erase, (Page Buffer) Program Operations	6	1.65	3	3.1	V	
V _{LKO}	V _{CC} Lockout Voltage		1.5			V	

Notes:

1. All currents are in RMS unless otherwise noted. Typical values are the reference values at V_{CC} = 3.0V and T_A = +25°C unless V_{CC} is specified.
2. I_{CCWS} and I_{CCES} are specified with the device de-selected. If read or (page buffer) program is executed while in block erase suspend mode, the device's current draw is the sum of I_{CCES} and I_{CCR} or I_{CCW}. If read is executed while in (page buffer) program suspend mode, the device's current draw is the sum of I_{CCWS} and I_{CCR}.
3. Block erase, full chip erase, (page buffer) program are inhibited when V_{PP} ≤ V_{PPLK}, and not guaranteed outside the specified voltage.
4. The Automatic Power Savings (APS) feature automatically places the device in power save mode after read cycle completion. Standard address access timings (t_{AVQV}) provide new data when addresses are changed.
5. Sampled, not 100% tested.
6. V_{PP} is not used for power supply pin. With V_{PP} ≤ V_{PPLK}, block erase, full chip erase, (page buffer) program cannot be executed and should not be attempted.
7. The operating current in dual work is the sum of the operating current (read, erase, program) in each plane.
8. Includes RY/BY

7.6 AC Electrical Characteristics for Flash Memory

7.6.1 AC Test Conditions

Input Pulse Level	0 V to 2.7 V
Input Rise and Fall Time	5 ns
Input and Output Timing Ref. level	1.35 V
Output Load	1TTL +C _L (50pF)

7.6.2 Read Cycle

(T_A = -25°C to +85°C, V_{CC} = 2.7V to 3.1V)

Symbol	Parameter	Notes	Min.	Max.	Unit
t _{AVAV}	Read Cycle Time		65		ns
t _{AVQV}	Address to Output Delay			65	ns
t _{ELQV}	F ₂ - \overline{CE} to Output Delay	2		65	ns
t _{APA}	Page Address Access Time			25	ns
t _{GLQV}	F- \overline{OE} to Output Delay	2		20	ns
t _{PHQV}	\overline{RST} High to Output Delay			150	ns
t _{EHQZ} , t _{GHQZ}	F ₂ - \overline{CE} or F- \overline{OE} to Output in High-Z, Whichever Occurs First	1		20	ns
t _{ELQX}	F ₂ - \overline{CE} to Output in Low-Z	1	0		ns
t _{GLQX}	F- \overline{OE} to Output in Low-Z	1	0		ns
t _{OH}	Output Hold from First Occurring Address, F ₂ - \overline{CE} or F- \overline{OE} Change	1	0		ns
t _{AVEL} , t _{AVGL}	Address Setup to F ₂ - \overline{CE} and F- \overline{OE} Going Low for Reading Status Register	3,5	10		ns
t _{ELAX} , t _{GLAX}	Address Hold from F ₂ - \overline{CE} and F- \overline{OE} Going Low for Reading Status Register	4,5	30		ns
t _{EHEL} , t _{GHGL}	F ₂ - \overline{CE} and F- \overline{OE} Pulse Width High for Reading Status Register	5	15		ns

Notes:

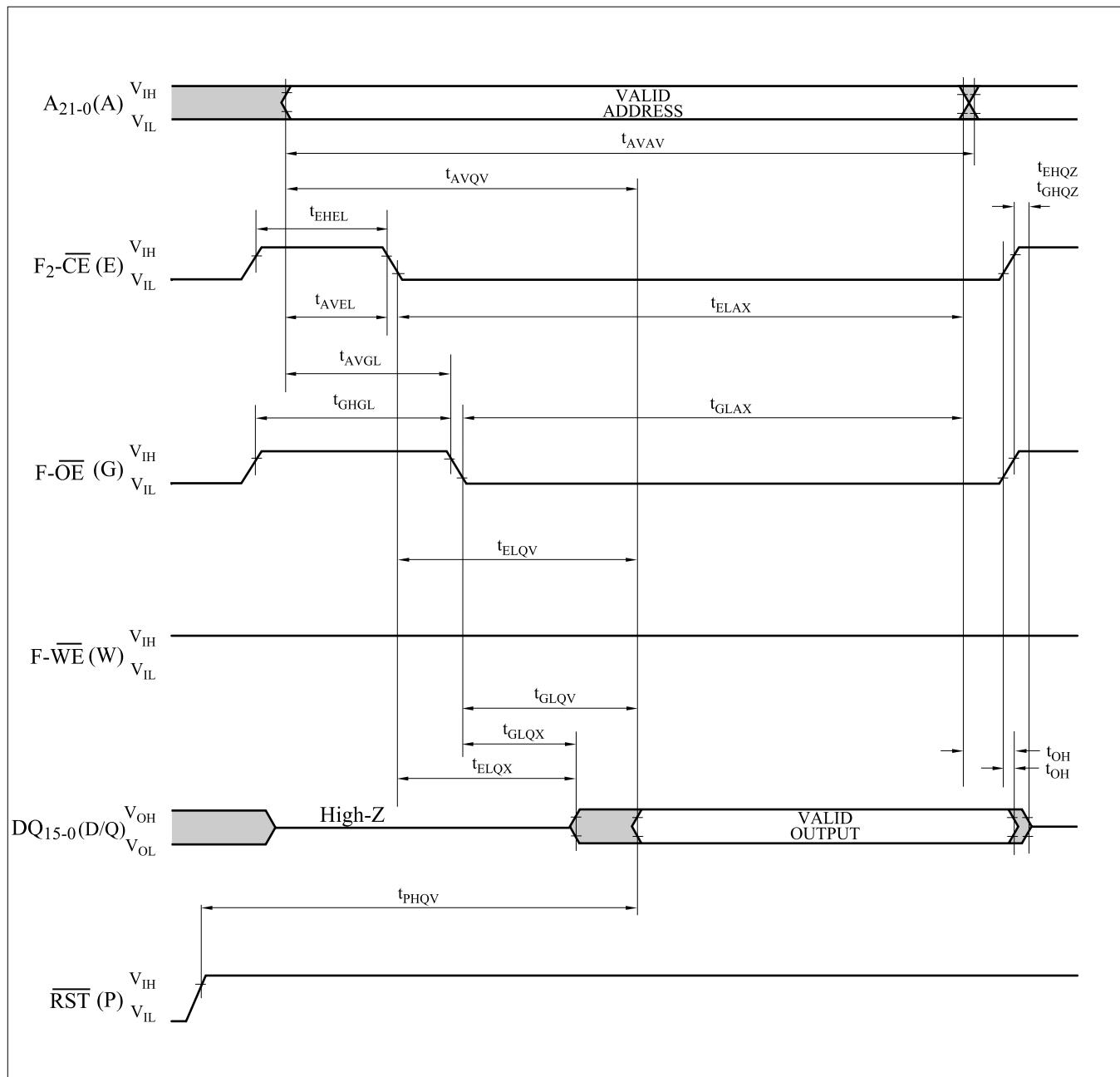
1. Sampled, not 100% tested.
2. F- \overline{OE} may be delayed up to t_{ELQV} - t_{GLQV} after the falling edge of F₂- \overline{CE} without impact to t_{ELQV}.
3. Address setup time (t_{AVEL}, t_{AVGL}) is defined from the falling edge of F₂- \overline{CE} or F- \overline{OE} (whichever goes low last).
4. Address hold time (t_{ELAX}, t_{GLAX}) is defined from the falling edge of F₂- \overline{CE} or F- \overline{OE} (whichever goes low last).
5. Specifications t_{AVEL}, t_{AVGL}, t_{ELAX}, t_{GLAX} and t_{EHEL}, t_{GHGL} for read operations apply to only status register read operations.

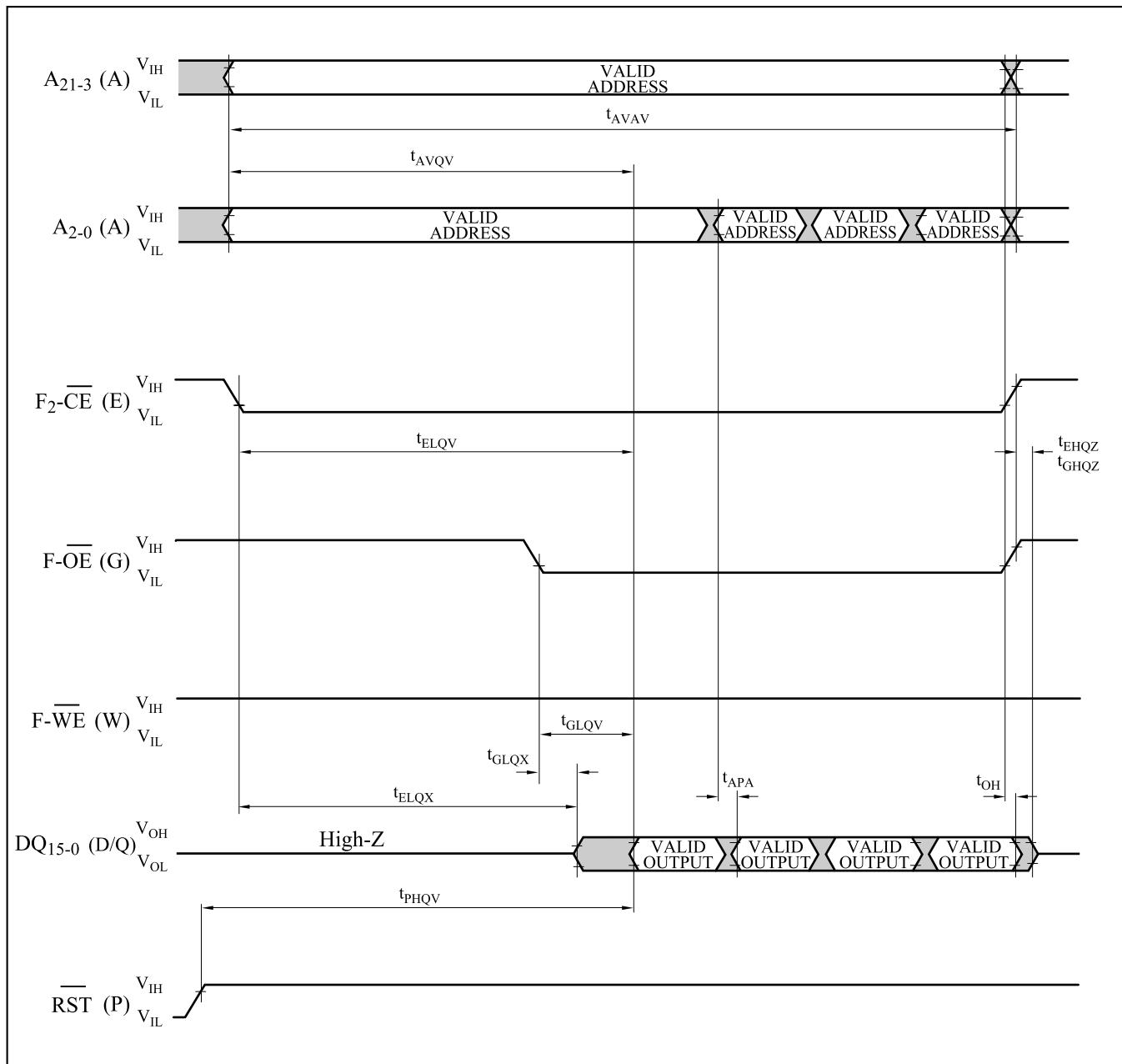
7.6.3 Write Cycle (F- \overline{WE} / F₂- \overline{CE} Controlled)^(1,2)(T_A = -25°C to +85°C, V_{CC} = 2.7V to 3.1V)

Symbol	Parameter	Notes	Min.	Max.	Unit
t _{AVAV}	Write Cycle Time		65		ns
t _{PHWL} (t _{PHEL})	RST High Recovery to F- \overline{WE} (F ₂ - \overline{CE}) Going Low	3	150		ns
t _{ELWL} (t _{WLEL})	F ₂ - \overline{CE} (F- \overline{WE}) Setup to F- \overline{WE} (F ₂ - \overline{CE}) Going Low		0		ns
t _{WLWH} (t _{ELEH})	F- \overline{WE} (F ₂ - \overline{CE}) Pulse Width	4	50		ns
t _{DVWH} (t _{DVEH})	Data Setup to F- \overline{WE} (F ₂ - \overline{CE}) Going High	8	40		ns
t _{AVWH} (t _{AVEH})	Address Setup to F- \overline{WE} (F ₂ - \overline{CE}) Going High	8	50		ns
t _{WHEH} (t _{EHWH})	F ₂ - \overline{CE} (F- \overline{WE}) Hold from F- \overline{WE} (F ₂ - \overline{CE}) High		0		ns
t _{WHDX} (t _{EHDX})	Data Hold from F- \overline{WE} (F ₂ - \overline{CE}) High		0		ns
t _{WHAX} (t _{EHAX})	Address Hold from F- \overline{WE} (F ₂ - \overline{CE}) High		0		ns
t _{WHWL} (t _{EHEL})	F- \overline{WE} (F ₂ - \overline{CE}) Pulse Width High	5	15		ns
t _{SHWH} (t _{SHEH})	\overline{WP} High Setup to F- \overline{WE} (F ₂ - \overline{CE}) Going High	3	0		ns
t _{VVWH} (t _{VVEH})	V _{PP} Setup to F- \overline{WE} (F ₂ - \overline{CE}) Going High	3	200		ns
t _{WHGL} (t _{EHGL})	Write Recovery before Read		30		ns
t _{QVSL}	\overline{WP} High Hold from Valid SRD, RY/ \overline{BY} High-Z	3, 6	0		ns
t _{QVVL}	V _{PP} Hold from Valid SRD, RY/ \overline{BY} High-Z	3, 6	0		ns
t _{WHR0} (t _{EHR0})	F- \overline{WE} (F ₂ - \overline{CE}) High to SR.7 Going "0"	3, 7		t _{AVQV} +50	ns
t _{WHRL} (t _{EHRL})	F- \overline{WE} (F ₂ - \overline{CE}) High to RY/ \overline{BY} Going Low	3		100	ns

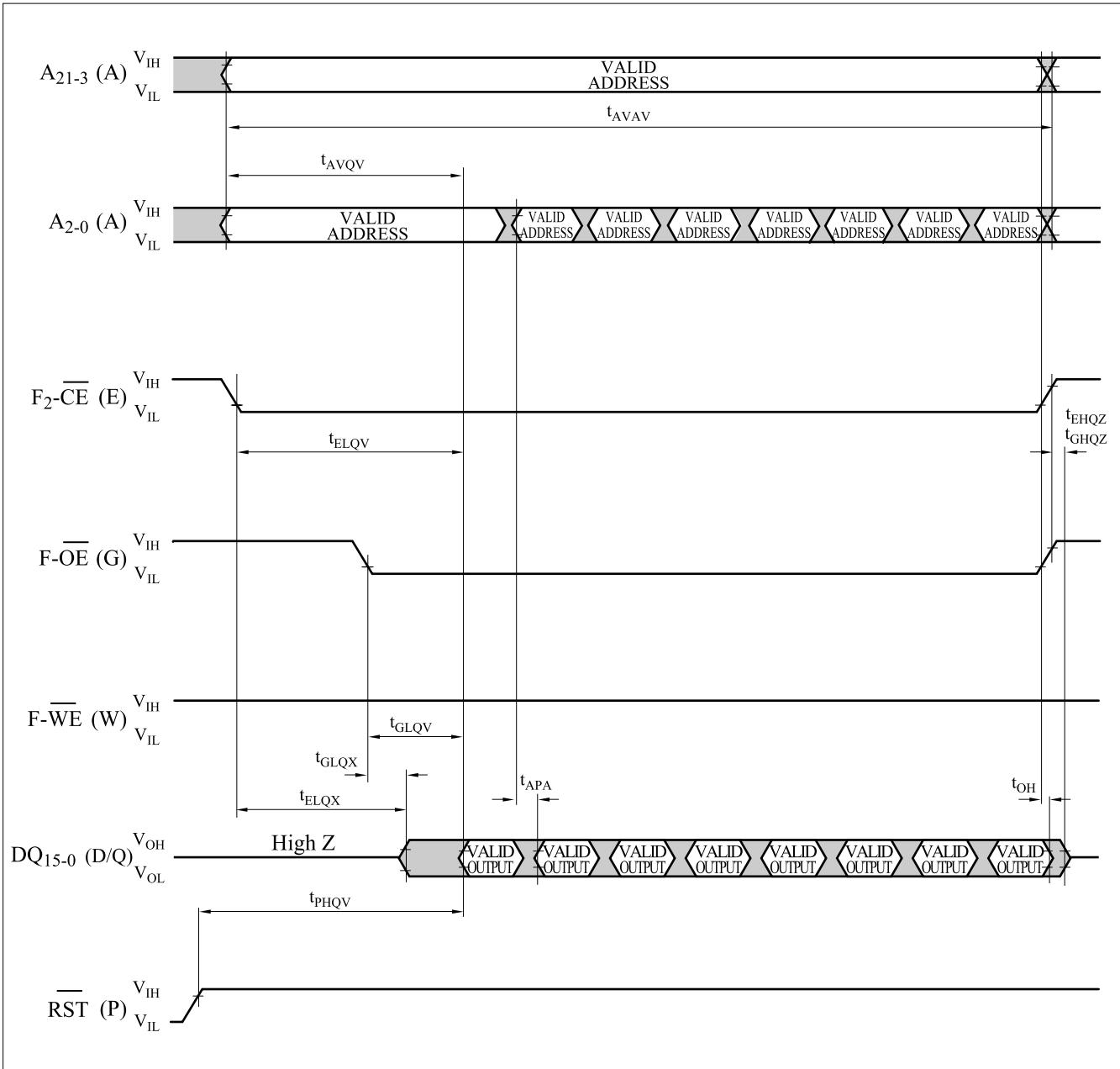
Notes:

1. The timing characteristics for reading the status register during block erase, full chip erase, (page buffer) program operations are the same as during read-only operations. See the AC Characteristics for read cycle.
2. A write operation can be initiated and terminated with either F₂- \overline{CE} or F- \overline{WE} .
3. Sampled, not 100% tested.
4. Write pulse width (t_{WP}) is defined from the falling edge of F₂- \overline{CE} or F- \overline{WE} (whichever goes low last) to the rising edge of F₂- \overline{CE} or F- \overline{WE} (whichever goes high first). Hence, t_{WP}=t_{WLWH}=t_{ELEH}=t_{WLEH}=t_{ELWH}.
5. Write pulse width high (t_{WPH}) is defined from the rising edge of F₂- \overline{CE} or F- \overline{WE} (whichever goes high first) to the falling edge of F₂- \overline{CE} or F- \overline{WE} (whichever goes low last). Hence, t_{WPH}=t_{WHWL}=t_{EHEL}=t_{WHEL}=t_{EHWL}.
6. V_{PP} should be held at V_{PP}=V_{PPH} until determination of block erase, full chip erase, (page buffer) program success (SR.1/3/4/5=0).
7. t_{WHR0} (t_{EHR0}) after the Read Query or Read Identifier Codes command=t_{AVQV}+100ns.
8. See 7.2.1 Command Definitions for valid address and data for block erase, full chip erase, (page buffer) program or lock bit configuration.

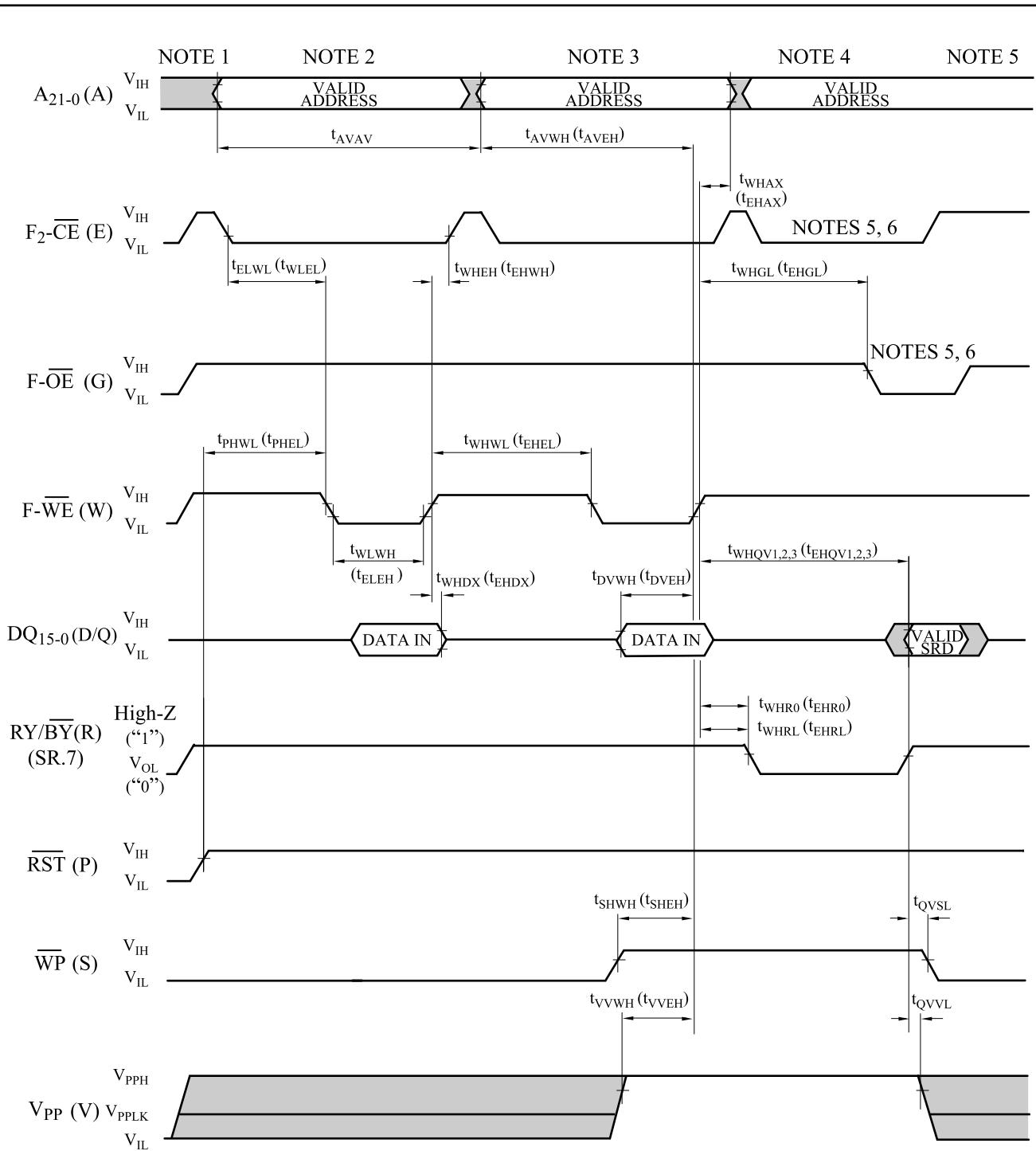

7.6.4 Block Erase, Full Chip Erase, (Page Buffer) Program Performance ⁽³⁾(T_A = -25°C to +85°C, V_{CC} = 2.7V to 3.1V)


Symbol	Parameter	Notes	Page Buffer Command is Used or not Used	V _{PP} =V _{PPH}			Unit
				Min.	Typ. ⁽¹⁾	Max. ⁽²⁾	
t _{WPB}	4K-Word Parameter Block Program Time	2	Not Used		0.05	0.3	s
		2	Used		0.03	0.12	s
t _{WMB}	32K-Word Main Block Program Time	2	Not Used		0.38	2.4	s
		2	Used		0.24	1	s
t _{WHQV1} / t _{EHQV1}	Word Program Time	2	Not Used		11	200	μs
		2	Used		7	100	μs
t _{WHQV2} / t _{EHQV2}	4K-Word Parameter Block Erase Time	2	-		0.3	4	s
t _{WHQV3} / t _{EHQV3}	32K-Word Main Block Erase Time	2	-		0.6	5	s
	Full Chip Erase Time	2			80	700	s
t _{WHRH1} / t _{EHRH1}	(Page Buffer) Program Suspend Latency Time to Read	4	-		5	10	μs
t _{WHRH2} / t _{EHRH2}	Block Erase Suspend Latency Time to Read	4	-		5	20	μs
t _{ERES}	Latency Time from Block Erase Resume Command to Block Erase Suspend Command	5	-	500			μs

Notes:


1. Typical values measured at V_{CC} = 3.0V, V_{PP} = 3.0V, and T_A = +25°C. Assumes corresponding lock bits are not set. Subject to change based on device characterization.
2. Excludes external system-level overhead.
3. Sampled, but not 100% tested.
4. A latency time is required from writing suspend command (F- \overline{WE} or F₂- \overline{CE} going high) until SR.7 going “1” or RY/ \overline{BY} going High-Z.
5. If the interval time from a Block Erase Resume command to a subsequent Block Erase Suspend command is shorter than t_{ERES} and its sequence is repeated, the block erase operation may not be finished.

7.6.5 Flash Memory AC Characteristics Timing Chart


AC Waveform for Single Asynchronous Read Operations from Status Register, Identifier Codes or Query Code

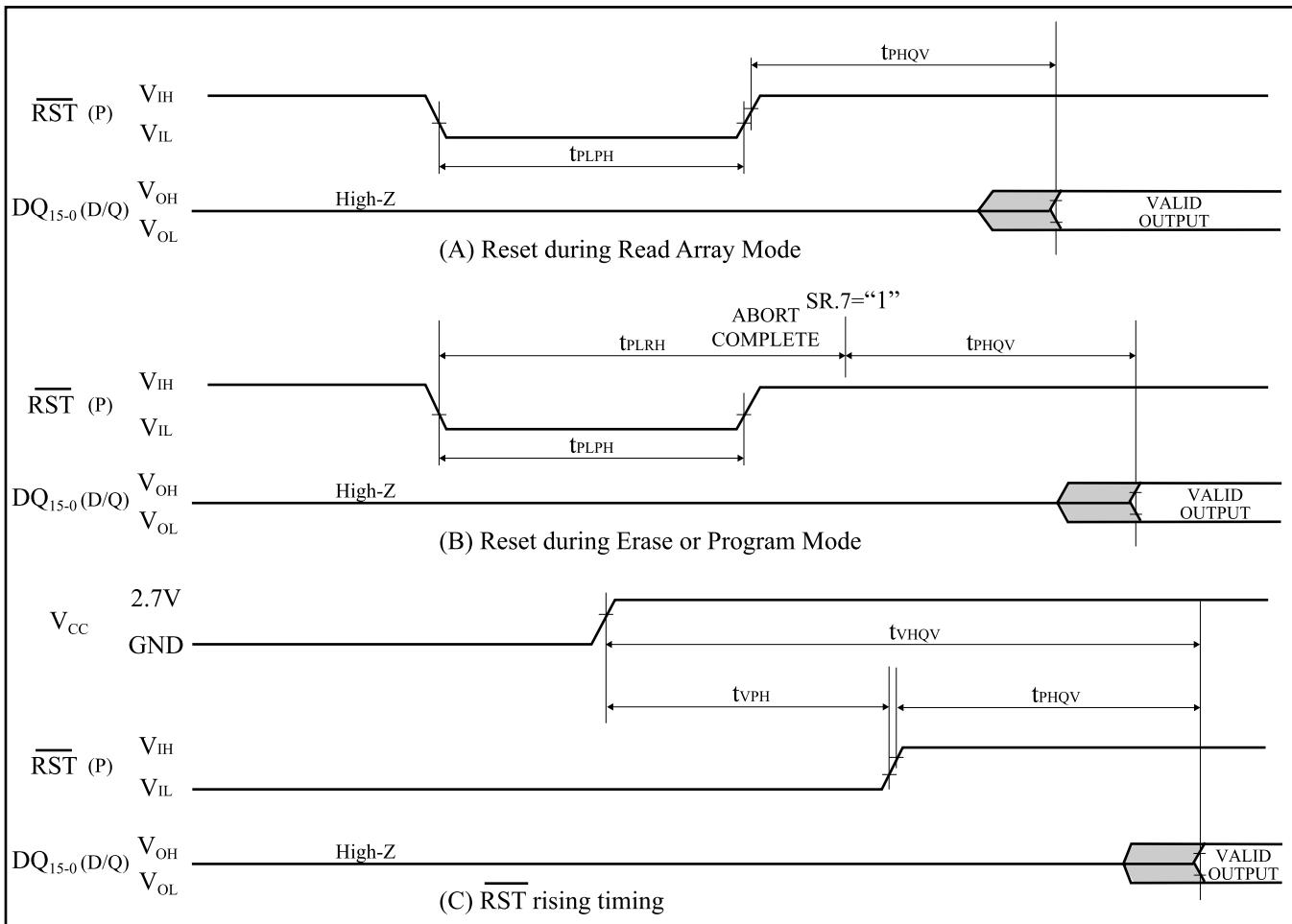
AC Waveform for Asynchronous 4-Word Page Mode Read Operations from Main Blocks or Parameter Blocks

AC Waveform for Asynchronous 8-Word Page Mode Read Operations from Main Blocks or Parameter Blocks

AC Waveform for Write Operations (F-WE / F2-CE Controlled)

Notes:

1. VCC power-up and standby.
2. Write each first cycle command.
3. Write each second cycle command or valid address and data.
4. Automated erase or program delay.
5. Read status register data.
6. For read operation, F-OE and F-CE must be driven active, and F-WE de-asserted.


7.6.6 Reset Operations

 $(T_A = -25^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, V_{CC} = 2.7\text{V} \text{ to } 3.1\text{V})$

Symbol	Parameter	Notes	Min.	Max.	Unit
t_{PLPH}	\overline{RST} Low to Reset during Read (\overline{RST} should be low during power-up.)	1, 2, 3	100		ns
t_{PLRH}	\overline{RST} Low to Reset during Erase or Program	1, 3, 4		22	μs
t_{VPH}	$V_{CC} = 2.7\text{V}$ to \overline{RST} High	1, 3, 5	100		ns
t_{VHQV}	$V_{CC} = 2.7\text{V}$ to Output Delay	3		1	ms

Notes:

1. A reset time, t_{PHQV} , is required from the later of SR.7 (RY/ \overline{BY}) going “1” (High-Z) or \overline{RST} going high until outputs are valid. See the AC Characteristics - read cycle for t_{PHQV} .
2. t_{PLPH} is $<100\text{ns}$ the device may still reset but this is not guaranteed.
3. Sampled, not 100% tested.
4. If \overline{RST} asserted while a block erase, full chip erase or (page buffer) program operation is not executing, the reset will complete within 100ns.
5. When the device power-up, holding \overline{RST} low minimum 100ns is required after V_{CC} has been in predefined range and also has been in stable there.

AC Waveform for Reset Operation

8. Smartcombo RAM

8.1 Truth Table

8.1.1 Bus Operation ⁽¹⁾

Smartcombo RAM	Notes	SC- \overline{CE}_1	CE ₂	S- \overline{OE}	S- \overline{WE}	\overline{LB}	\overline{UB}	DQ ₀ to Q ₁₅
Read		L	H	L	H	(3)		(3)
Output Disable				H	H	X	X	High - Z
Write		H	X	H	L	(3)		(3)
Standby				X	X	X	X	High - Z
Sleep	2	X	L			H	H	
						X	X	

Notes:

1. L = V_{IL}, H = V_{IH}, X = H or L, High-Z = High impedance. Refer to the DC Characteristics.2. CE₂ pin must be fixed to high level except sleep mode.3. \overline{LB} , \overline{UB} Control Mode

\overline{LB}	\overline{UB}	DQ ₀ to DQ ₇	DQ ₈ to DQ ₁₅
L	L	D _{OUT} /D _{IN}	D _{OUT} /D _{IN}
L	H	D _{OUT} /D _{IN}	High - Z
H	L	High - Z	D _{OUT} /D _{IN}

8.2 DC Electrical Characteristics for Smartcombo RAM

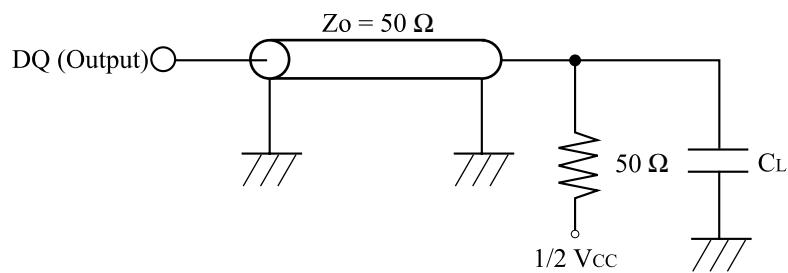
DC Electrical Characteristics

(TA = -25°C to +85°C, VCC = 2.7V to 3.1V)

Symbol	Parameter	Notes	Min.	Typ.	Max.	Unit	Test Conditions
C _{IN}	Input Capacitance	1			8	pF	V _{IN} = 0V
C _{IO}	I/O Capacitance	1			10	pF	V _{I/O} = 0V
I _{LI}	Input Leakage Current				±1	µA	V _{IN} = V _{CC} or GND
I _{LO}	Output Leakage Current				±1	µA	V _{OUT} = V _{CC} or GND
I _{SB}	V _{CC} Standby Current	2			100	µA	SC- $\overline{CE}_1 \geq V_{CC} - 0.2V$, CE ₂ $\geq V_{CC} - 0.2V$
I _{SLP}	V _{CC} Sleep Mode Current	3			30	µA	SC- $\overline{CE}_1 \geq V_{CC} - 0.2V$, CE ₂ $\leq 0.2V$
I _{CC1}	V _{CC} Operation Current				50	mA	t _{CYCLE} = Min., I _{I/O} = 0mA, SC- $\overline{CE}_1 = V_{IL}$
V _{IL}	Input Low Voltage	1	-0.3		0.4	V	
V _{IH}	Input High Voltage	1	V _{CC} -0.4		V _{CC} +0.3	V	
V _{OL}	Output Low Voltage	1			0.2V _{CC}	V	I _{OL} = 0.5mA
V _{OH}	Output High Voltage	1	2.2			V	I _{OH} = -0.5mA

Notes:

1. Sampled, not 100% tested.
2. Memory cell data is held. (CE₂ = "V_{IH}")
3. Memory cell data is not held. (CE₂ = "V_{IL}")


8.3 AC Electrical Characteristics for Smartcombo RAM

8.3.1 AC Test Conditions

Input Pulse Level	0.2V _{CC} to 0.8V _{CC}
Input Rise and Fall Time	5 ns
Input and Output Timing Ref. Level	1/2 V _{CC}
Output Load	1TTL +C _L (30pF) ^(1, 2)

Notes:

1. Including scope and socket capacitance.
2. AC characteristics directed with the note should be measured with the output load shown in below.

8.3.2 Read Cycle

(TA = -25°C to +85°C, VCC = 2.7V to 3.1V)

Symbol	Parameter	Notes	Min.	Max.	Unit
t _{RC}	Read Cycle Time		65		ns
t _{AA}	Address Access Time			65	ns
t _{ACE}	Chip Enable Access Time			65	ns
t _{OE}	Output Enable to Output Valid			45	ns
t _{BE}	Byte Enable Access Time			65	ns
t _{PAA}	Page Access Time			20	ns
t _{OH}	Output Hold from Address Change		5		ns
t _{PRC}	Page Read Cycle Time		20		ns
t _{CLZ}	SC- \overline{CE}_1 Low to Output Active		10		ns
t _{OLZ}	S- \overline{OE} Low to Output Active		5		ns
t _{BLZ}	\overline{UB} or \overline{LB} Low to Output Active		5		ns
t _{CHZ}	SC- \overline{CE}_1 High to Output in High-Z			25	ns
t _{OHZ}	S- \overline{OE} High to Output in High-Z			25	ns
t _{BHZ}	\overline{UB} or \overline{LB} High to Output in High-Z			25	ns
t _{ASO}	Address Setup to S- \overline{OE} Low		0		ns
t _{OAH}	S- \overline{OE} High Level to Address Hold		-5		ns
t _{CAH}	SC- \overline{CE}_1 High Level to Address Hold		0		ns
t _{BHAH}	\overline{LB} , \overline{UB} High Level to Address Hold	2	0		ns
t _{CLOL}	SC- \overline{CE}_1 Low Level to S- \overline{OE} Low Level	1	0	10,000	ns
t _{OLCH}	S- \overline{OE} Low Level to SC- \overline{CE}_1 High Level		45		ns
t _{CP}	SC- \overline{CE}_1 High Level Pulse Width		10		ns
t _{BP}	\overline{LB} , \overline{UB} High Level Pulse Width		10		ns
t _{OP}	S- \overline{OE} High Level Pulse Width	1	2	10,000	ns

Notes:

1. t_{CLOL} and t_{OP} (Max.) are applied while SC- \overline{CE}_1 is being hold at low level.
2. t_{BHAH} is specified after both \overline{LB} and \overline{UB} are High.

8.3.3 Write Cycle

(TA = -25°C to +85°C, VCC = 2.7V to 3.1V)

Symbol	Parameter	Notes	Min.	Max.	Unit
t _{WC}	Write Cycle Time		65		ns
t _{CW}	Chip Enable to End of Write		55		ns
t _{AW}	Address Valid to End of Write		55		ns
t _{BW}	Byte Select Time		55		ns
t _{WP}	Write Pulse Width		50		ns
t _{WR}	Write Recovery Time		0		ns
t _{CP}	SC- \overline{CE}_1 High Level Pulse Width		10		ns
t _{BP}	\overline{LB} , \overline{UB} High Level Pulse Width		10		ns
t _{WHP}	S- \overline{WE} High Pulse Width		10		ns
t _{WHZ}	S- \overline{WE} Low to Output in High-Z			25	ns
t _{OW}	S- \overline{WE} High to Output Active		15		ns
t _{AS}	Address Setup Time		0		ns
t _{DW}	Input Data Setup Time		30		ns
t _{DH}	Input Data Hold Time		0		ns
t _{OAH}	S- \overline{OE} High Level to Address Hold		-5		ns
t _{CAH}	SC- \overline{CE}_1 High Level to Address Hold		0		ns
t _{BAAH}	\overline{LB} , \overline{UB} High Level to Address Hold	2	0		ns
t _{OES}	S- \overline{OE} High Level to S- \overline{WE} Set	1	0	10,000	ns
t _{OEH}	S- \overline{WE} High Level to S- \overline{OE} Set	1	10	10,000	ns

Notes:

1. t_{OES} and t_{OEH} (Max.) are applied while SC- \overline{CE}_1 is being hold at low level.
2. t_{BAAH} is specified after both \overline{LB} and \overline{UB} are High.

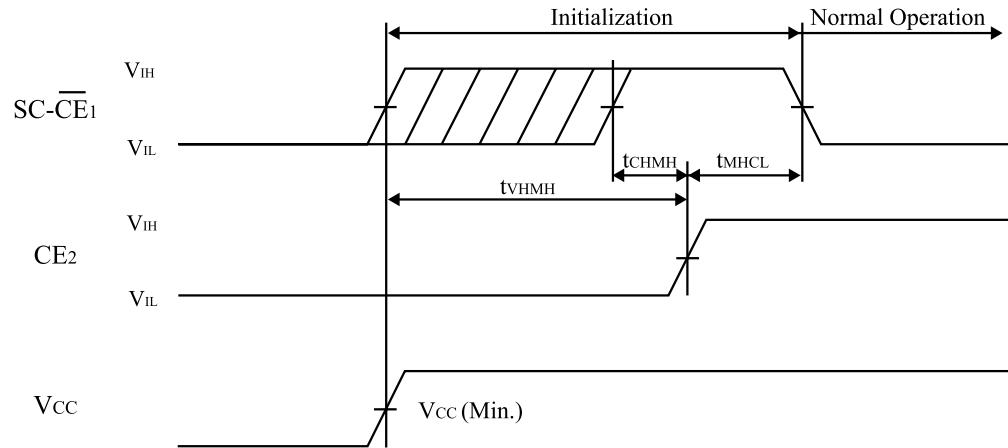
8.3.4 Initialization

 $(T_A = -25^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, V_{CC} = 2.7\text{V} \text{ to } 3.1\text{V})$

Symbol	Parameter	Notes	Min.	Max.	Unit
t_{VHMH}	Power Application to CE_2 Low Level Hold		50		μs
t_{CHMH}	SC- \overline{CE}_1 High Level to CE_2 High Level		10		ns
t_{MHCL}	Following Power Application CE_2 High Level Hold to SC- \overline{CE}_1 Low Level		300		μs

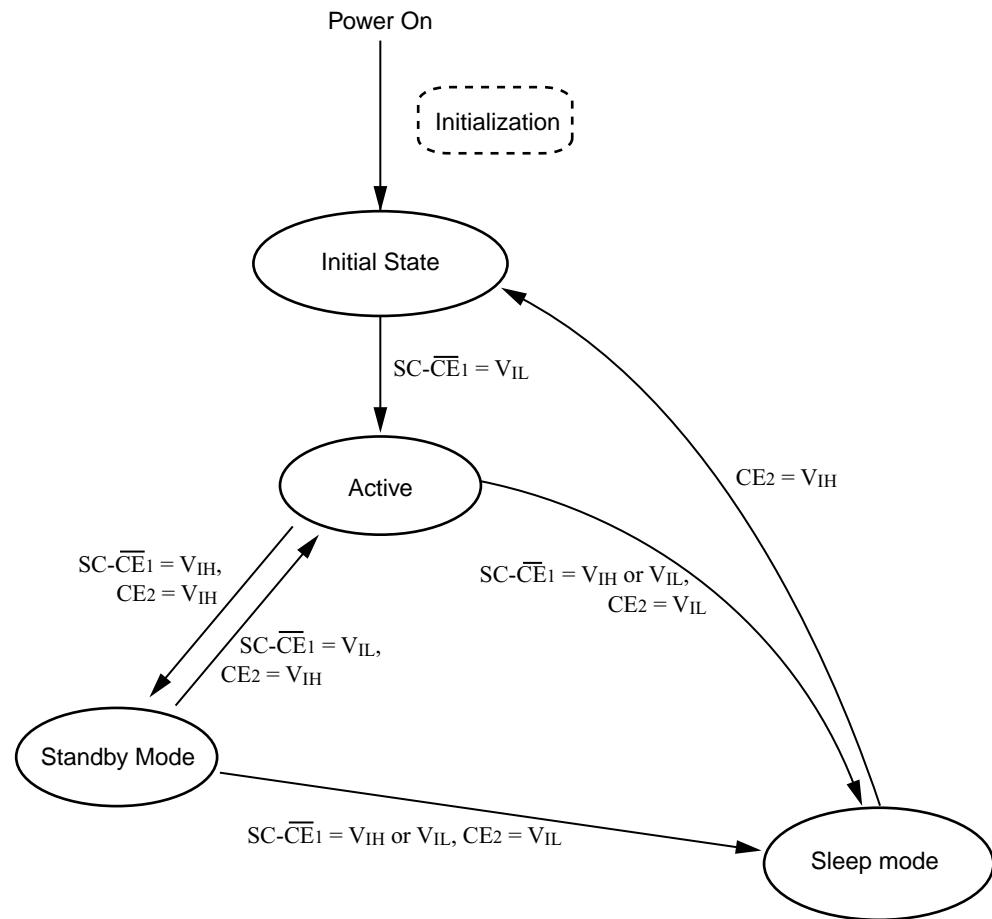
8.3.5 Sleep Mode Entry / Exit

 $(T_A = -25^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, V_{CC} = 2.7\text{V} \text{ to } 3.1\text{V})$


Symbol	Parameter	Notes	Min.	Max.	Unit
t_{CHML}	Sleep Mode Entry SC- \overline{CE}_1 High Level to CE_2 Low Level		0		ns
t_{MHCL}	Sleep Mode Exit to Normal Operation CE_2 High Level to SC- \overline{CE}_1 Low Level		300		μs

8.4 Initialization

Initialize the power application using the following sequence to stabilize internal circuits.


- (1) Following power application, make CE_2 high level after fixing CE_2 to low level for the period of t_{VHMH} . Make $SC-\overline{CE}_1$ high level before making CE_2 high level.
- (2) $SC-\overline{CE}_1$ and CE_2 are fixed to high level for the period of t_{MHCL} .

Normal operation is possible after the completion of initialization.

Notes:

1. Make CE_2 low level when starting the power supply.
2. t_{VHMH} is specified from when the power supply voltage reaches the prescribed minimum value ($V_{CC\ Min.}$).

Standby Mode State Machine

8.5 Page Read Operation

8.5.1 Features of Page Read Operation ⁽²⁾

Features	Notes	8 Words Mode
Page Length		8 words
Page Read-corresponding Addresses		A ₂ , A ₁ , A ₀
Page Read Start Address		Don't care
Page Direction		Don't care
Interrupt during page read operation	1	Enabled

Notes:

1. An interrupt is output when SC- \overline{CE}_1 = High or in case A₃ or a higher address changes.

2. Page Length:

8 words is supported as the page lengths.

Page-Corresponding Addresses:

The page read-enabled addresses are A₂, A₁, and A₀. Fix addresses other than A₂, A₁, and A₀ during page read operation.

Page Start Address:

Since random page read is supported, any address (A₂, A₁, A₀) can be used as the page read start address.

Page Direction:

Since random page read is possible, there is not restriction on the page direction.

Interrupt during Page Read Operation:

When generating an interrupt during page read, either make SC- \overline{CE}_1 high level or change A₃ and higher addresses.

When page read is not used:

Since random page read is supported, even when not using page read, random access is possible as usual.

8.6 Mode Register Settings

The sleep mode can be set using the mode register. Since the initial value of the mode register at power application is undefined, be sure to set the mode register after initialization at power application. However, since sleep mode is not entered unless $CE_2 = \text{Low}$ when sleep mode is not used, it is not necessary to set the mode register. Moreover, when using page read without using sleep mode, it is not necessary to set the mode register.

8.6.1 Mode Register Setting Method

The mode register setting mode can be entered by successively writing two specific data after two continuous reads of the highest address (1FFFFFFH). The mode register setting is a continuous four-cycle operation (two read cycles and two write cycles).

Commands are written to the command register. The command register is used to latch the addresses and data required for executing commands, and it does not have an exclusive memory area.

For the timing chart and flow chart, refer to Mode Register Setting Timing Chart (P.71), Mode Register Setting Flow Chart (P.72).

Following table shows the commands and command sequences.

Command Sequence

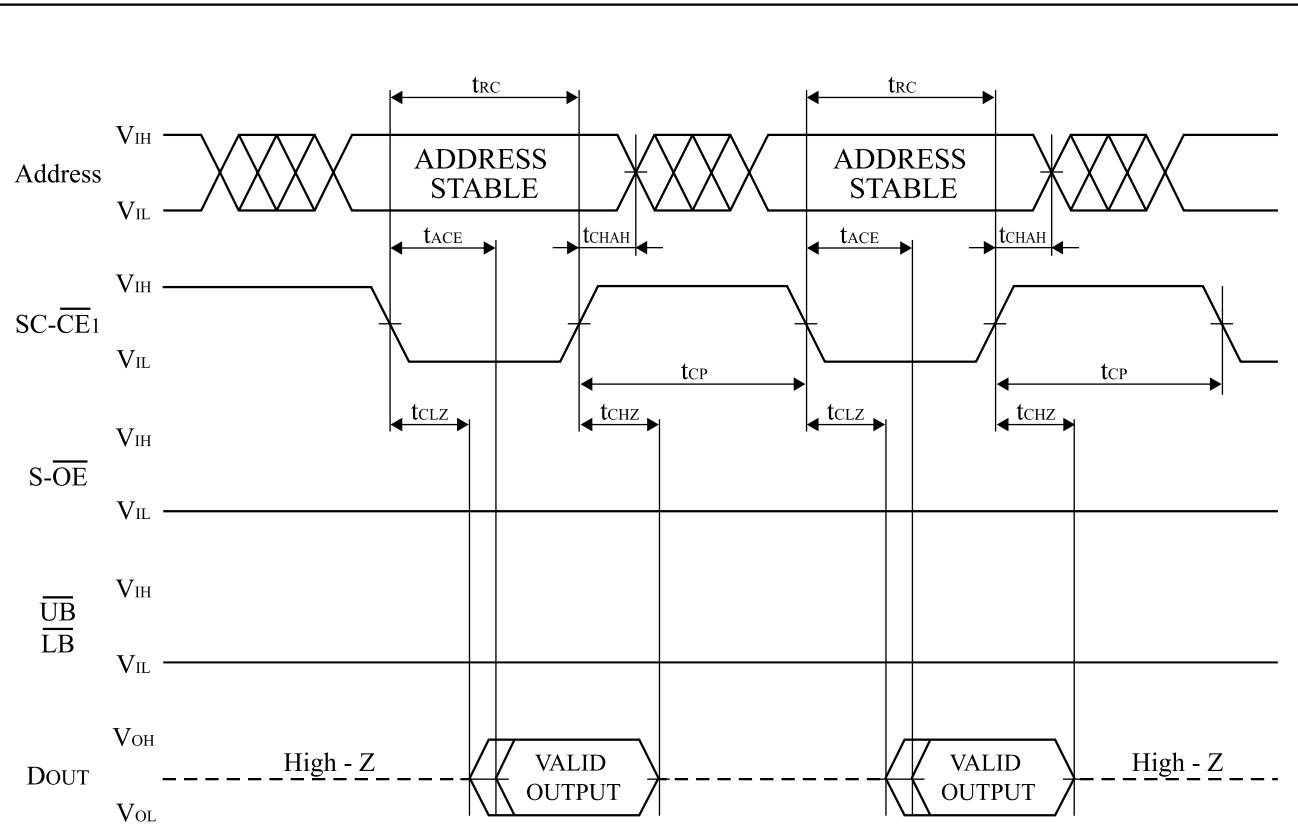
Command Sequence	1st Bus Cycle (Read Cycle)		2nd Bus Cycle (Read Cycle)		3rd Bus Cycle (Write Cycle)		4th Bus Cycle (Write Cycle)	
	Address	Data	Address	Data	Address	Data	Address	Data
Sleep Mode	1FFFFFFH	-	1FFFFFFH	-	1FFFFFFH	00H	1FFFFFFH	07H

4th Bus Cycle (Write cycle)

DQ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Mode Register Setting	0	0	0	0	0	0	0	0	0	0	0	0	0	PL	1	1
Page Length												1	8 words			

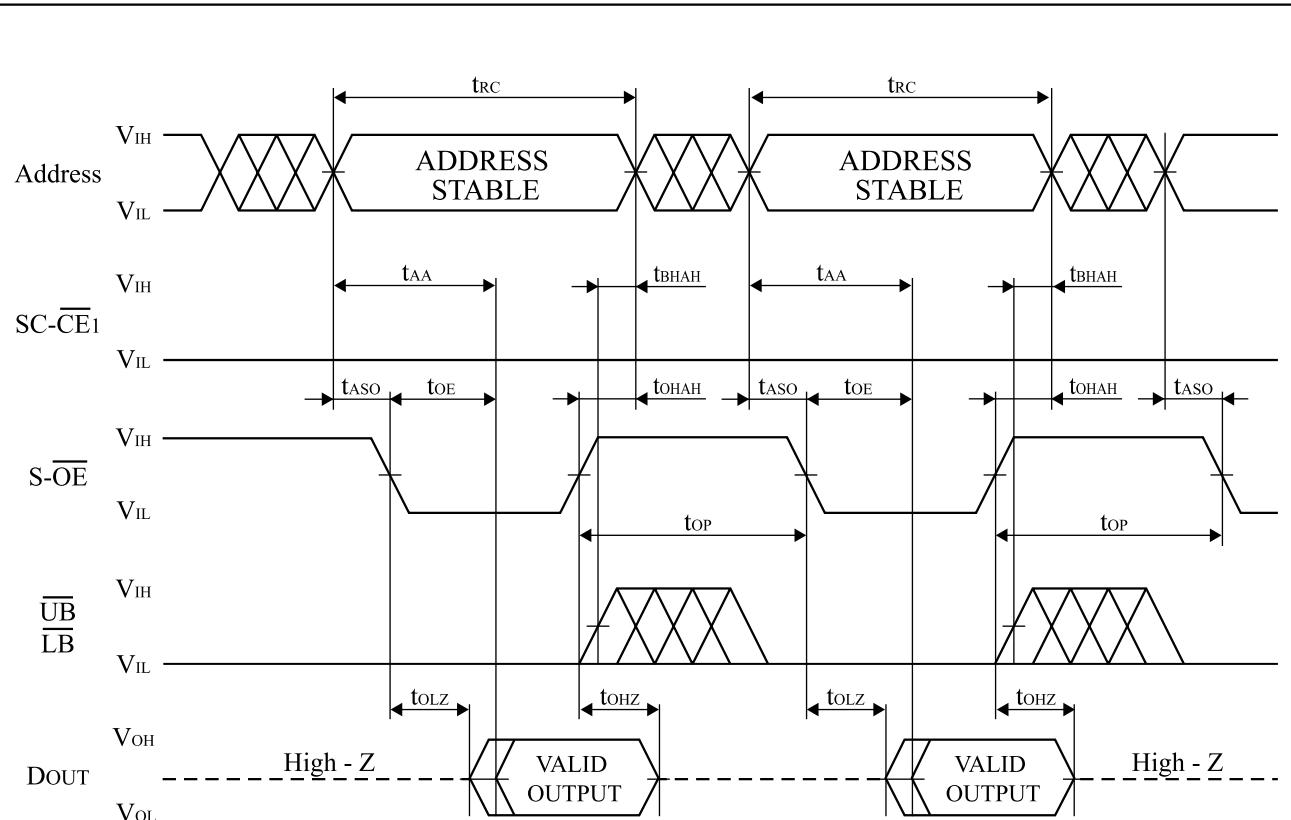
8.6.2 Cautions for Setting Mode Register

Since, for the mode register setting, the internal counter status is judged by toggling $SC-\overline{CE}_1$ and $S-\overline{OE}$, toggle $SC-\overline{CE}_1$ at every cycle during entry (read cycle twice, write cycle twice), and toggle $S-\overline{OE}$ like $SC-\overline{CE}_1$ at the first and second read cycles.


If incorrect addresses or data are written, or if addresses or data are written in the incorrect order, the setting of the mode register are not performed correctly.

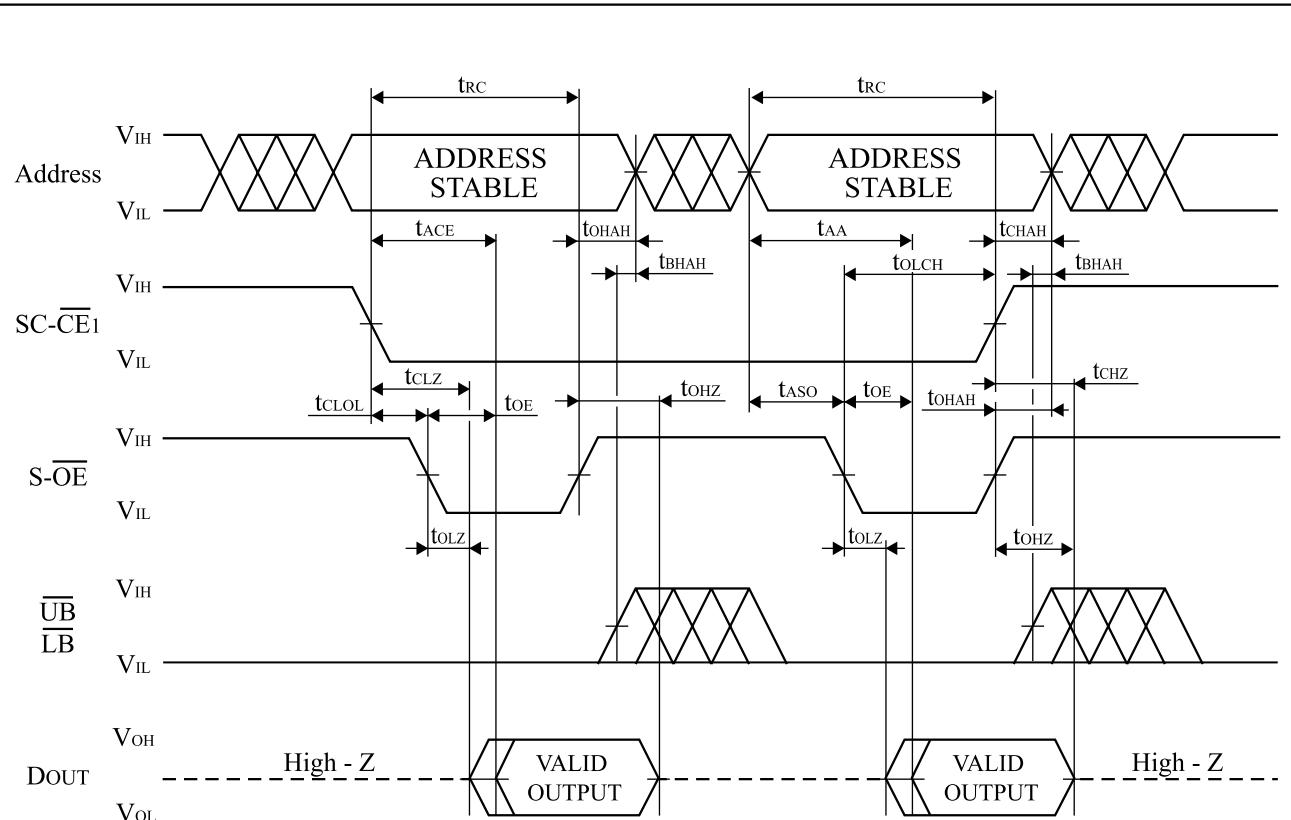
When the highest address (1FFFFFFH) is read consecutively three or more times, the mode register setting entries are cancelled.

Once the sleep mode has been set in the mode register, these settings are retained until they are set again, while applying the power supply. However, the mode register setting will become undefined if the power is turned off, so set the mode register again after power application.


For the timing chart and flow chart, refer to Mode Register Setting Timing Chart (P.71), Mode Register Setting Flow Chart (P.72).

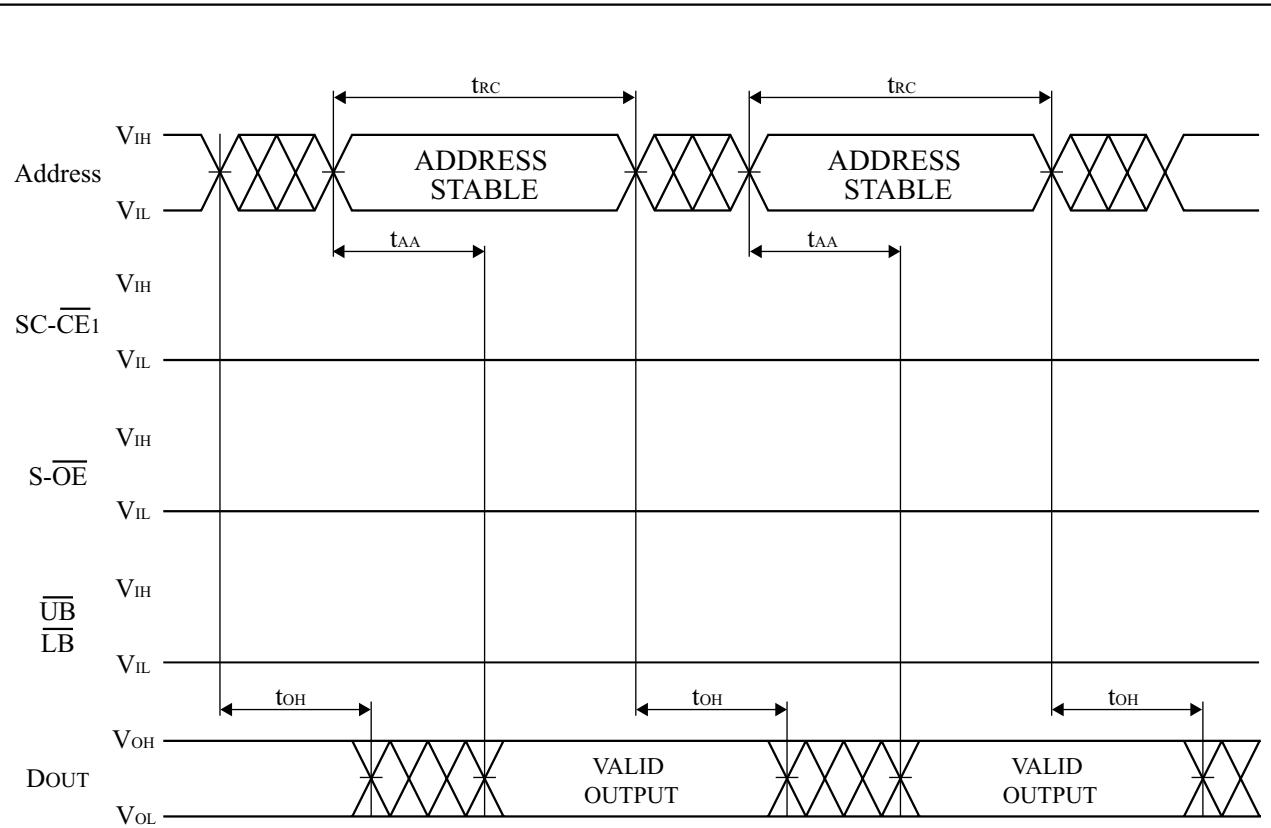
8.7 Smartcombo RAM AC Characteristics Timing Chart

Read Cycle Timing Chart 1 (SC- \overline{CE}_1 Controlled)


Note:

1. In read cycle, CE2 and S- \overline{WE} should be fixed to high level.

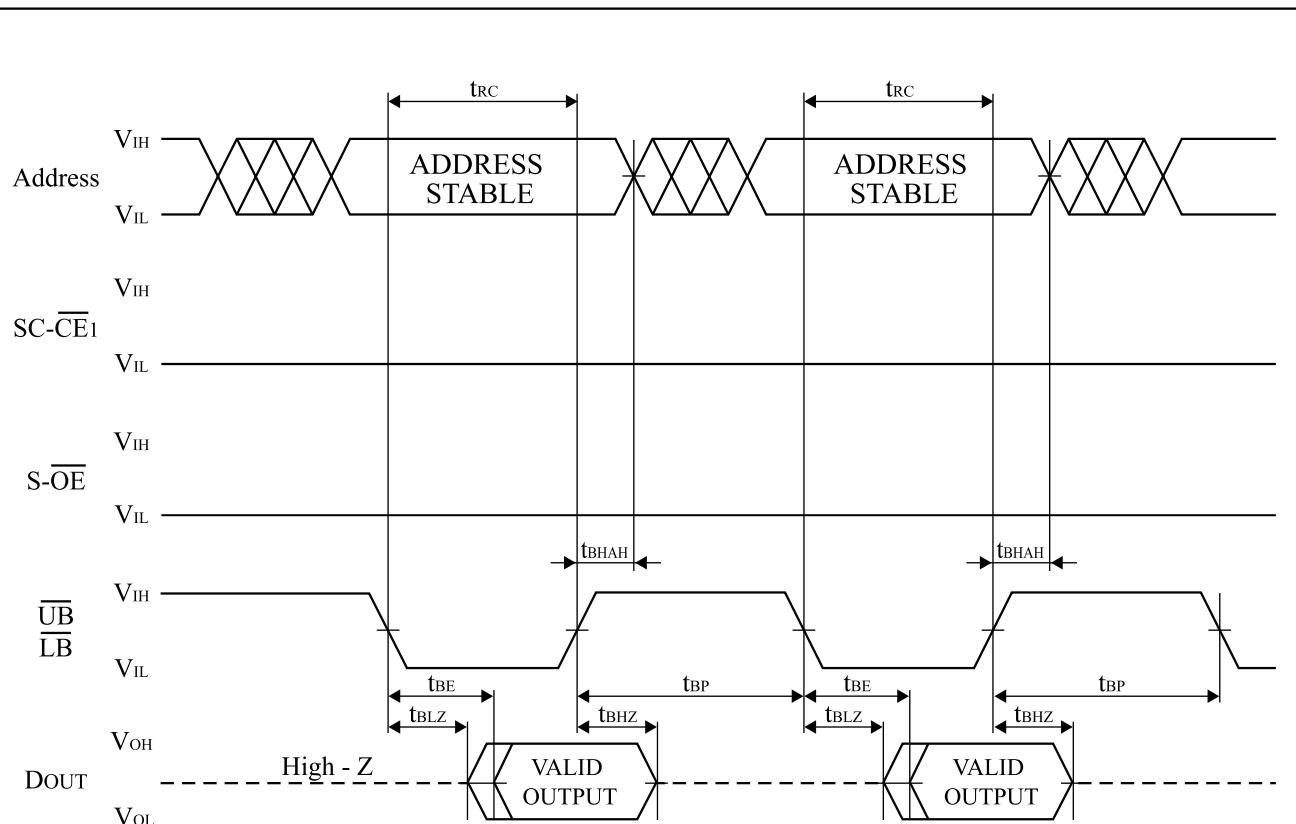
Read Cycle Timing Chart 2 (S- \overline{OE} Controlled)


Note:

1. In read cycle, CE2 and S- \overline{WE} should be fixed to high level.

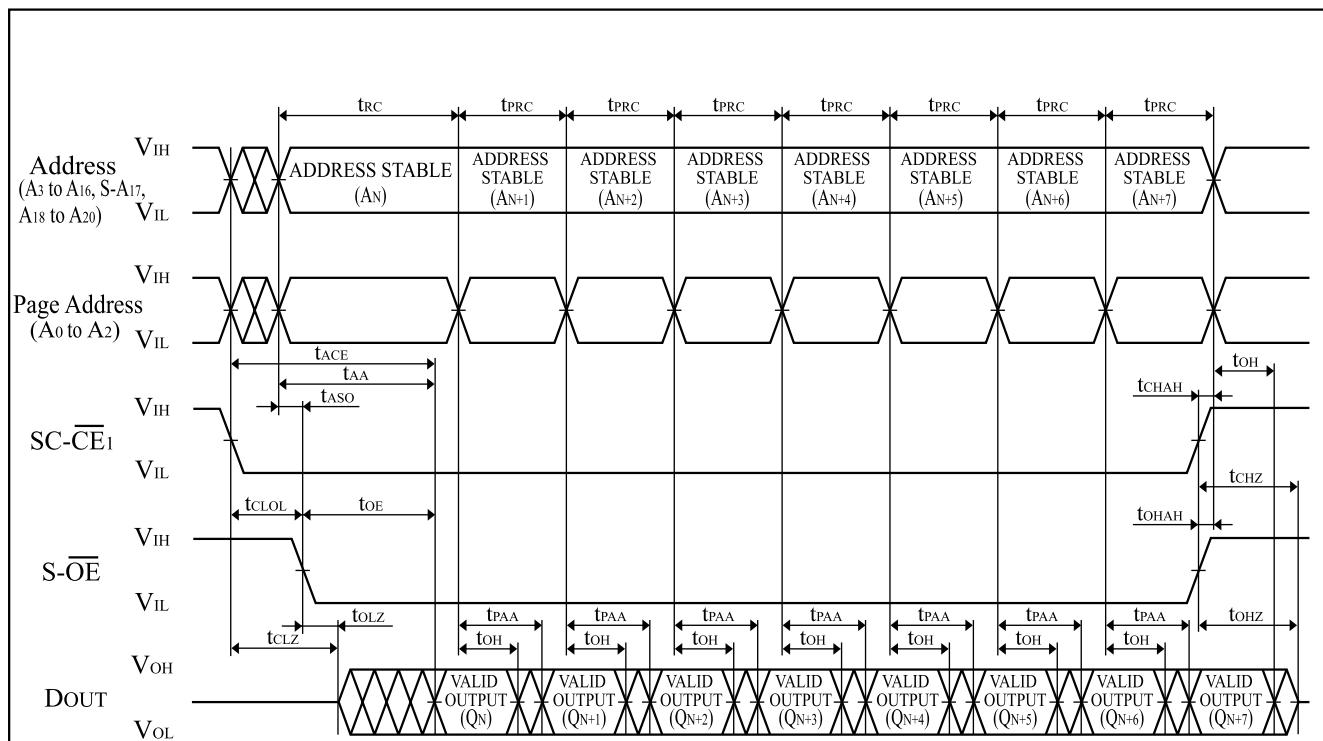
Read Cycle Timing Chart 3 (SC- $\overline{CE1}$ / S- \overline{OE} Controlled)

Note:


1. In read cycle, CE2 and S- \overline{WE} should be fixed to high level.

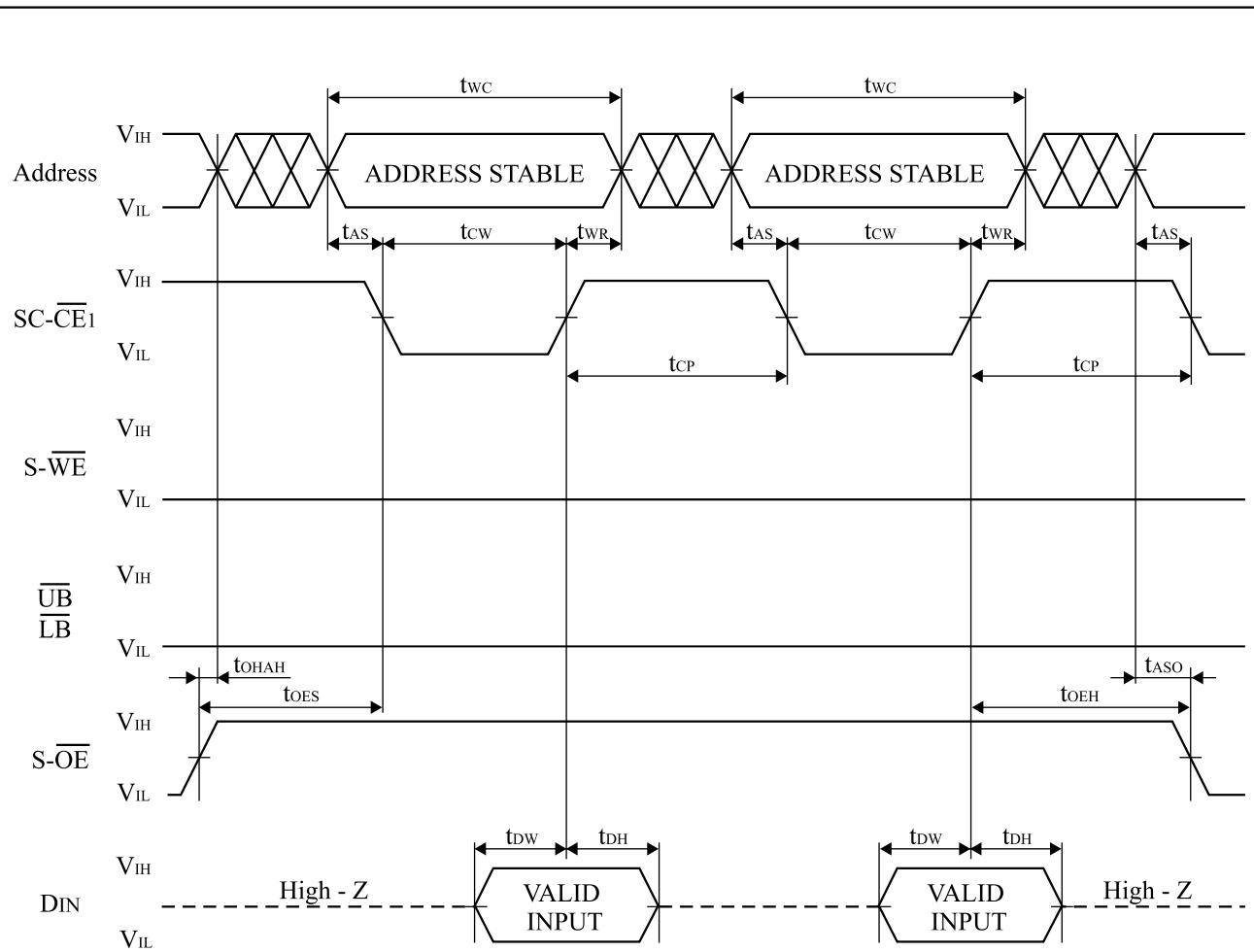
Read Cycle Timing Chart 4 (Address Controlled)

Notes:


1. In read cycle, CE2 and S- \overline{WE} should be fixed to high level.
2. When read cycle time is less than t_{RC} (Min.), the address access time (t_{AA}) is not guaranteed.

Read Cycle Timing Chart 5 (LB / UB Controlled)

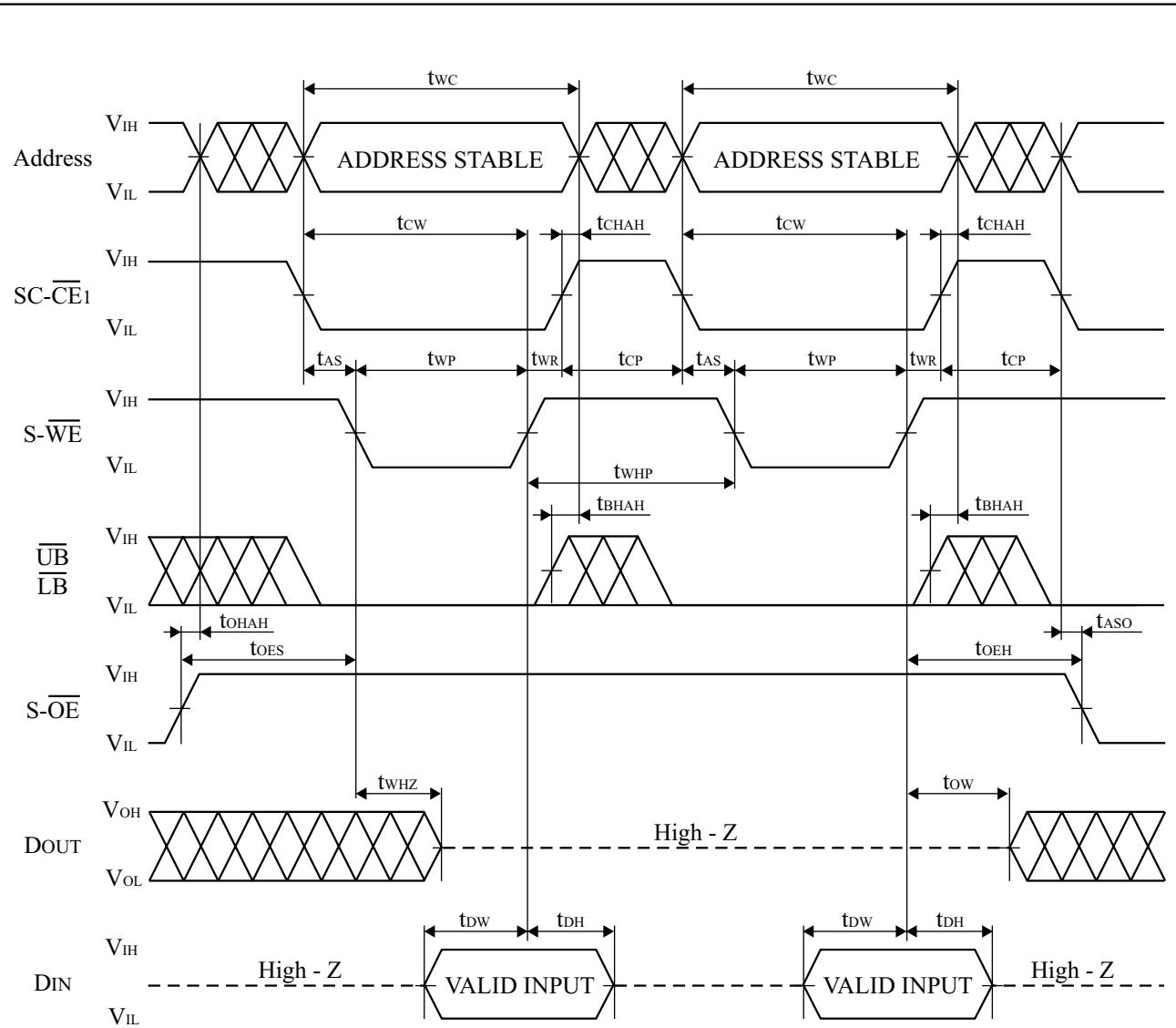
Note:


1. In read cycle, CE2 and S-WE should be fixed to high level.

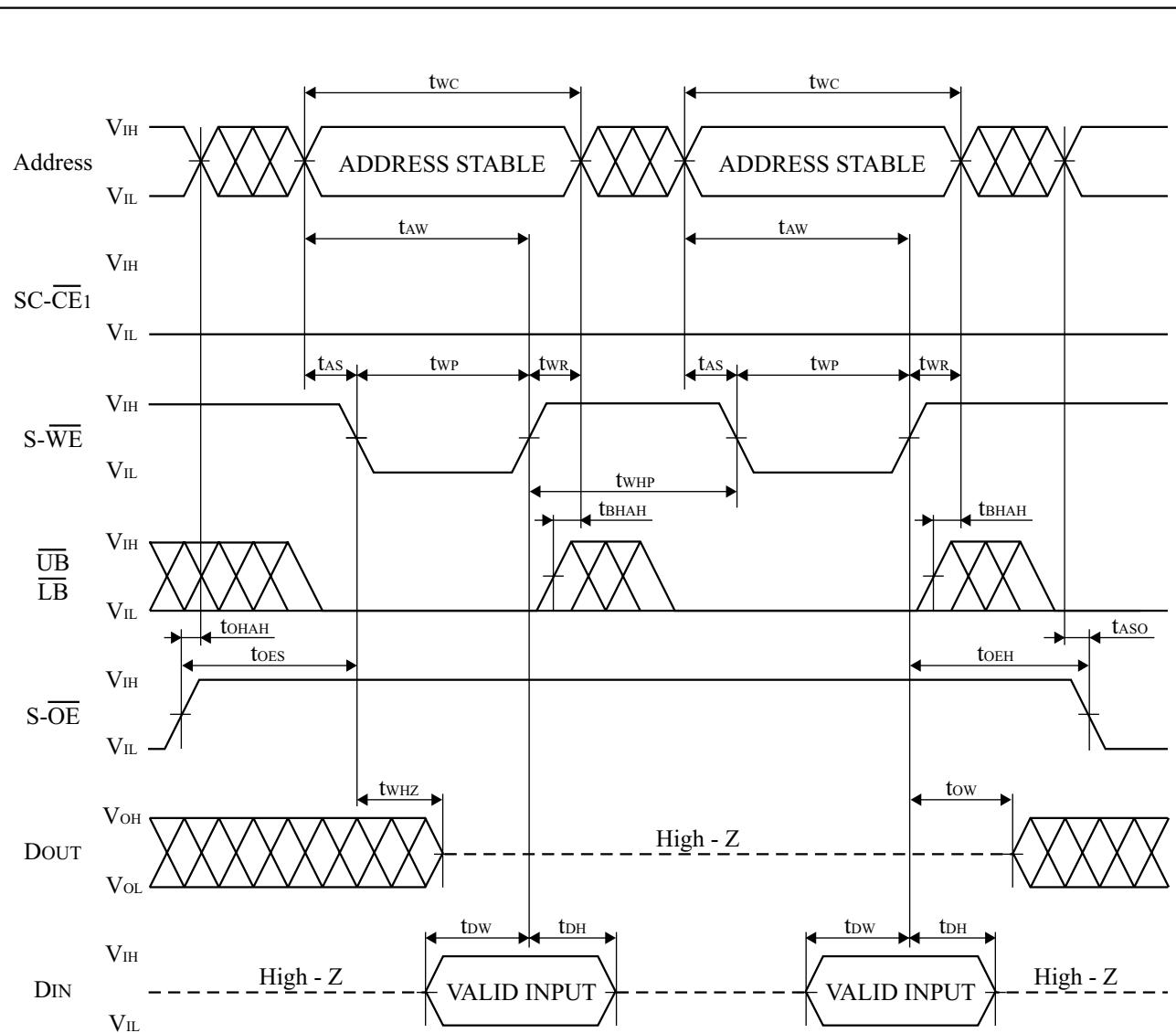
8 Word Page Read Cycle Timing Chart

Notes:

1. In read cycle, CE2 and S-W^E should be fixed to high level.
2. LB and UB are Low level.

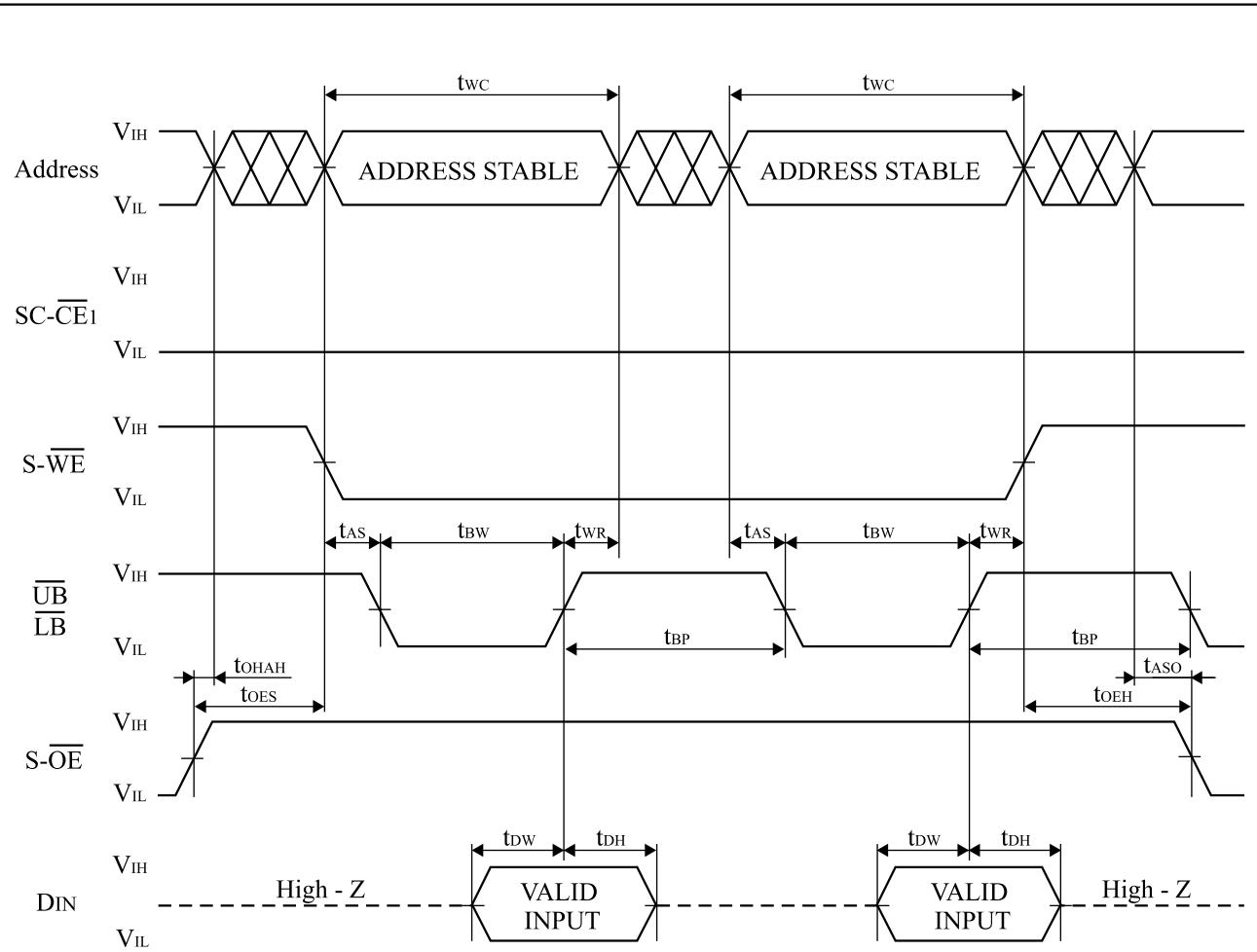

Write Cycle Timing Chart 1 (SC- \overline{CE}_1 Controlled)

Notes:


1. During address transition, at least one of SC- \overline{CE}_1 , S-WE or LB, UB pins should be inactivated.
2. Do not input data to the DQ pins while they are in the output state.
3. In write cycle, CE2 and S-OE should be fixed to high level.
4. Write operation is done during the overlap time of a low level SC- \overline{CE}_1 , S-WE, LB and/or UB.

Write Cycle Timing Chart 2 (S- \overline{WE} Controlled)

Notes:


1. During address transition, at least one of SC- $\overline{CE1}$, S- \overline{WE} or UB, \overline{LB} pins should be inactivated.
2. Do not input data to the DQ pins while they are in the output state.
3. In write cycle, CE2 and S- \overline{OE} should be fixed to high level.
4. Write operation is done during the overlap time of a low level SC- $\overline{CE1}$, S- \overline{WE} , \overline{LB} and/or \overline{UB} .

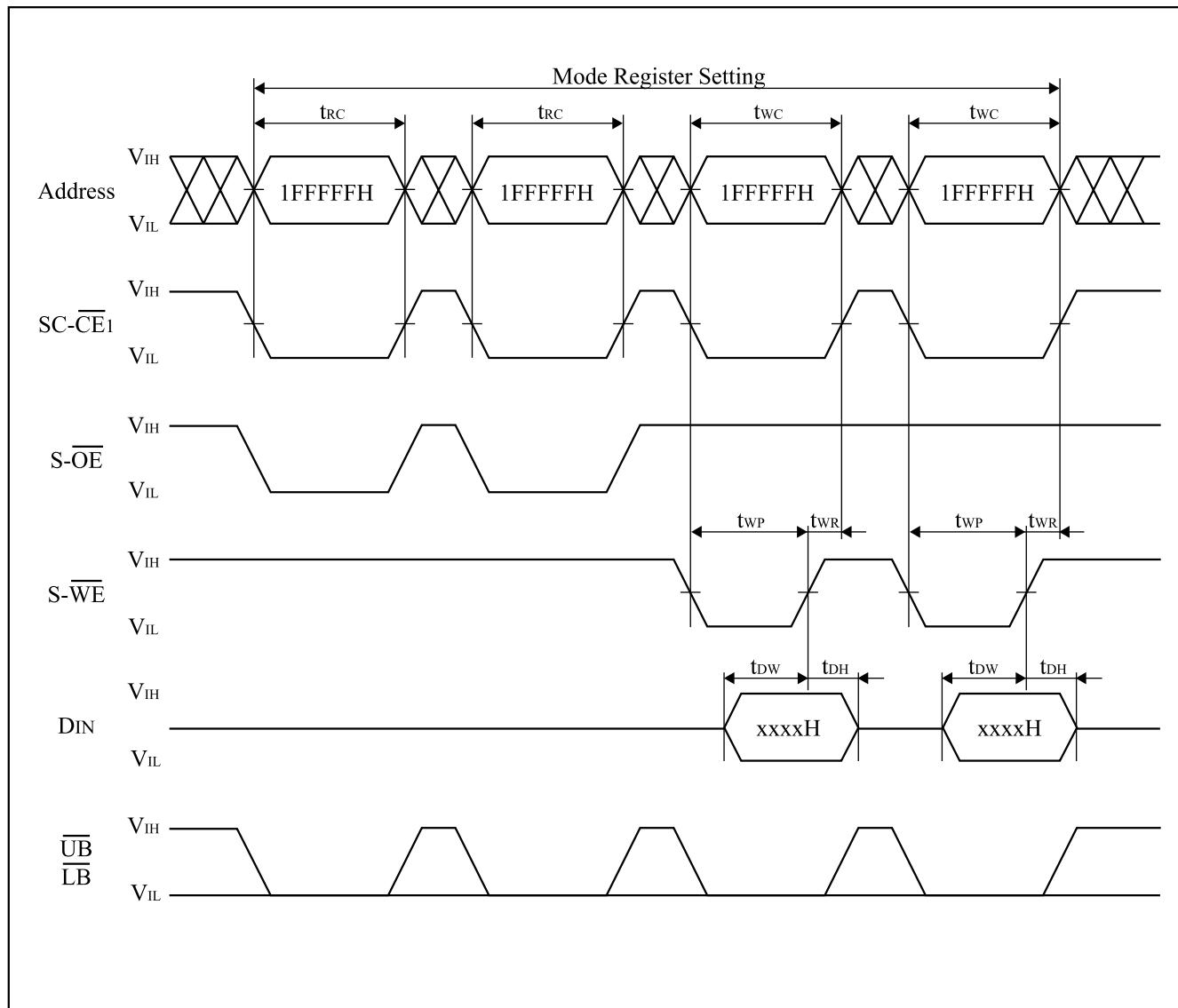
Write Cycle Timing Chart 3 (S- \overline{WE} Controlled)

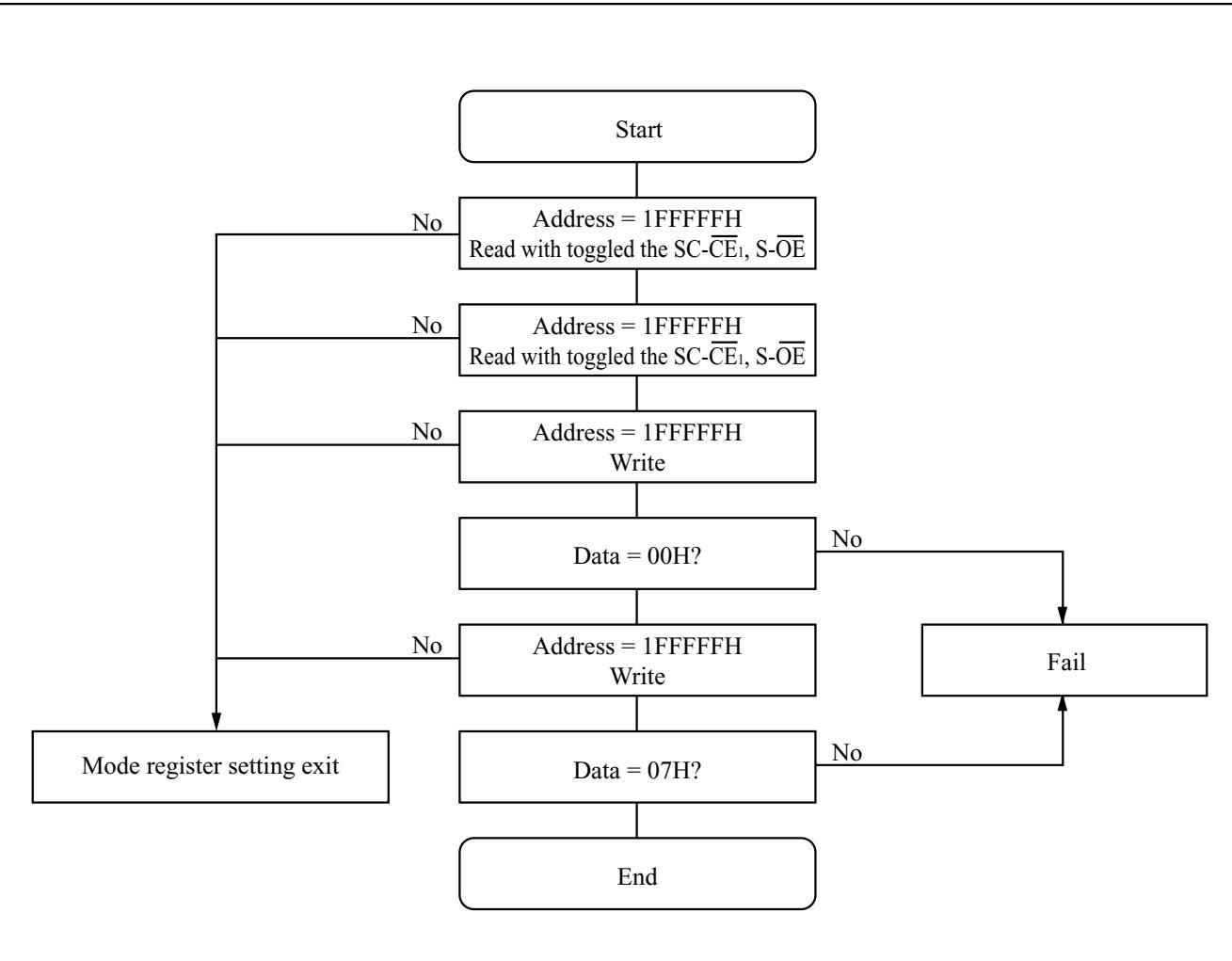
Notes:

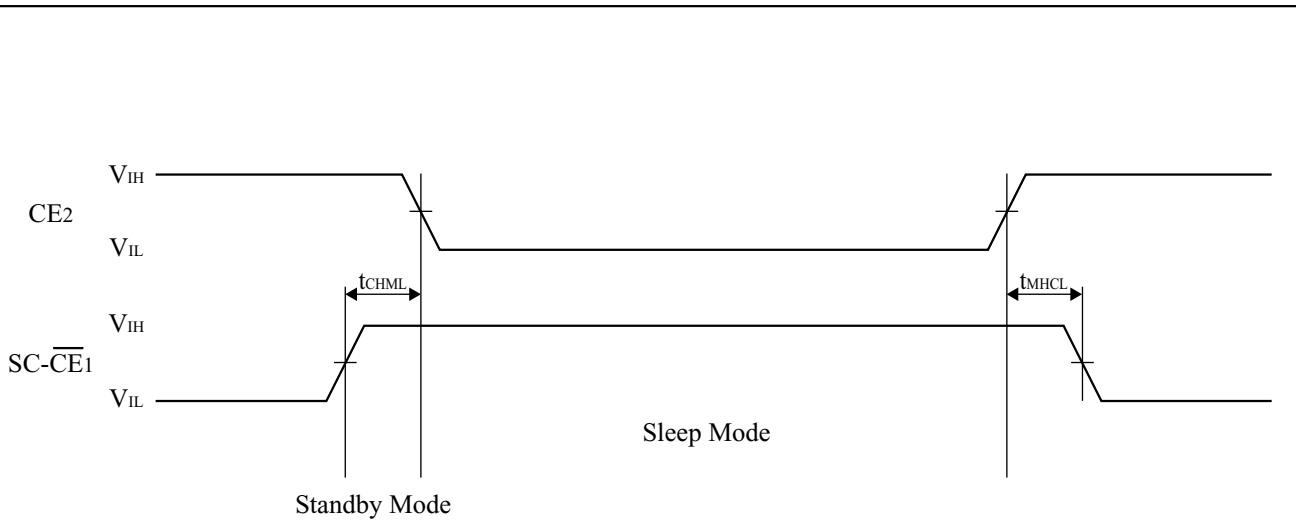
1. During address transition, at least one of SC- $\overline{CE1}$, S- \overline{WE} or \overline{LB} , \overline{UB} pins should be inactivated.
2. Do not input data to the DQ pins while they are in the output state.
3. In write cycle, CE2 and S- \overline{OE} should be fixed to high level.
4. Write operation is done during the overlap time of a low level SC- $\overline{CE1}$, S- \overline{WE} , \overline{LB} and/or \overline{UB} .

Write Cycle Timing Chart 4 (LB / UB Controlled)

Notes:


1. During address transition, at least one of SC- \overline{CE}_1 , S- \overline{WE} or LB, UB pins should be inactivated.
2. Do not input data to the DQ pins while they are in the output state.
3. In write cycle, CE2 and S- \overline{OE} should be fixed to high level.
4. Write operation is done during the overlap time of a low level SC- \overline{CE}_1 , S- \overline{WE} , LB and/or UB.


Write Cycle Timing Chart 5 (LB / UB Independent Controlled))



Notes:

1. During address transition, at least one of SC-CE1, S-WE or LB, UB pins should be inactivated.
2. Do not input data to the DQ pins while they are in the output state.
3. In write cycle, CE2 and S-OE should be fixed to high level.
4. Write operation is done during the overlap time of a low level SC-CE1, S-WE, LB and/or UB.

Mode Register Setting Timing Chart

Mode Register Setting Flow Chart

Sleep Mode Entry / Exit Timing Chart

9. SRAM

9.1 Truth Table

9.1.1 Bus Operation ⁽¹⁾

SRAM	Notes	S- \overline{CE}_1	CE_2	S- \overline{OE}	S- \overline{WE}	\overline{LB}	\overline{UB}	DQ ₀ to DQ ₁₅
Read		L	H	L	H	(2)		(2)
Output Disable				H	H	X	X	High - Z
Write				X	L	(2)		(2)
Standby		H	X	X	X	X	X	High - Z
		X	L			X	X	
		X	X			H	H	

Notes:

1. L = V_{IL}, H = V_{IH}, X = H or L, High-Z = High impedance. Refer to the DC Characteristics.
2. \overline{LB} , \overline{UB} Control Mode

\overline{LB}	\overline{UB}	DQ ₀ to DQ ₇	DQ ₈ to DQ ₁₅
L	L	D _{OUT} /D _{IN}	D _{OUT} /D _{IN}
L	H	D _{OUT} /D _{IN}	High - Z
H	L	High - Z	D _{OUT} /D _{IN}

9.2 DC Electrical Characteristics for SRAM

DC Electrical Characteristics

(TA = -25°C to +85°C, VCC = 2.7V to 3.1V)

Symbol	Parameter	Notes	Min.	Typ.	Max.	Unit	Test Conditions	
C _{IN}	Input Capacitance	1			8	pF	V _{IN} = 0V, f = 1MHz, T _A = 25°C	
C _{IO}	I/O Capacitance	1			10	pF	V _{I/O} = 0V, f = 1MHz, T _A = 25°C	
I _{LI}	Input Leakage Current				±1	μA	V _{IN} = V _{CC} or GND	
I _{LO}	Output Leakage Current				±1	μA	V _{OUT} = V _{CC} or GND	
I _{SB}	V _{CC} Standby Current				25	μA	S- \overline{CE}_1 , $CE_2 \geq V_{CC} - 0.2V$ or $CE_2 \leq 0.2V$	
I _{CC1}	V _{CC} Operation Current				45	mA	S- $\overline{CE}_1 = V_{IL}$, $CE_2 = V_{IH}$, $V_{IN} = V_{IL}$ or V_{IH}	t _{CYCLE} = Min. I _{I/O} = 0mA
I _{CC2}	V _{CC} Operation Current				8	mA	S- $\overline{CE}_1 \leq 0.2V$, $CE_2 \geq V_{CC} - 0.2V$, $V_{IN} \geq V_{CC} - 0.2V$ or $\leq 0.2V$	t _{CYCLE} = 1μs I _{I/O} = 0mA
V _{IL}	Input Low Voltage	1	-0.3		0.4	V		
V _{IH}	Input High Voltage	1	V _{CC} -0.4		V _{CC} +0.3	V		
V _{OL}	Output Low Voltage	1			0.2V _{CC}	V	I _{OL} = 0.5mA	
V _{OH}	Output High Voltage	1	2.2			V	I _{OH} = -0.5mA	

Notes:

1. Sampled, not 100% tested.

9.3 AC Electrical Characteristics for SRAM

9.3.1 AC Test Conditions

Input Pulse Level	0.4 V to 2.2 V
Input Rise and Fall Time	5 ns
Input and Output Timing Ref. Level	1.5 V
Output Load	1TTL + $C_L(30\text{pF})^{(1)}$

Note:

1. Including scope and socket capacitance.

9.3.2 Read Cycle

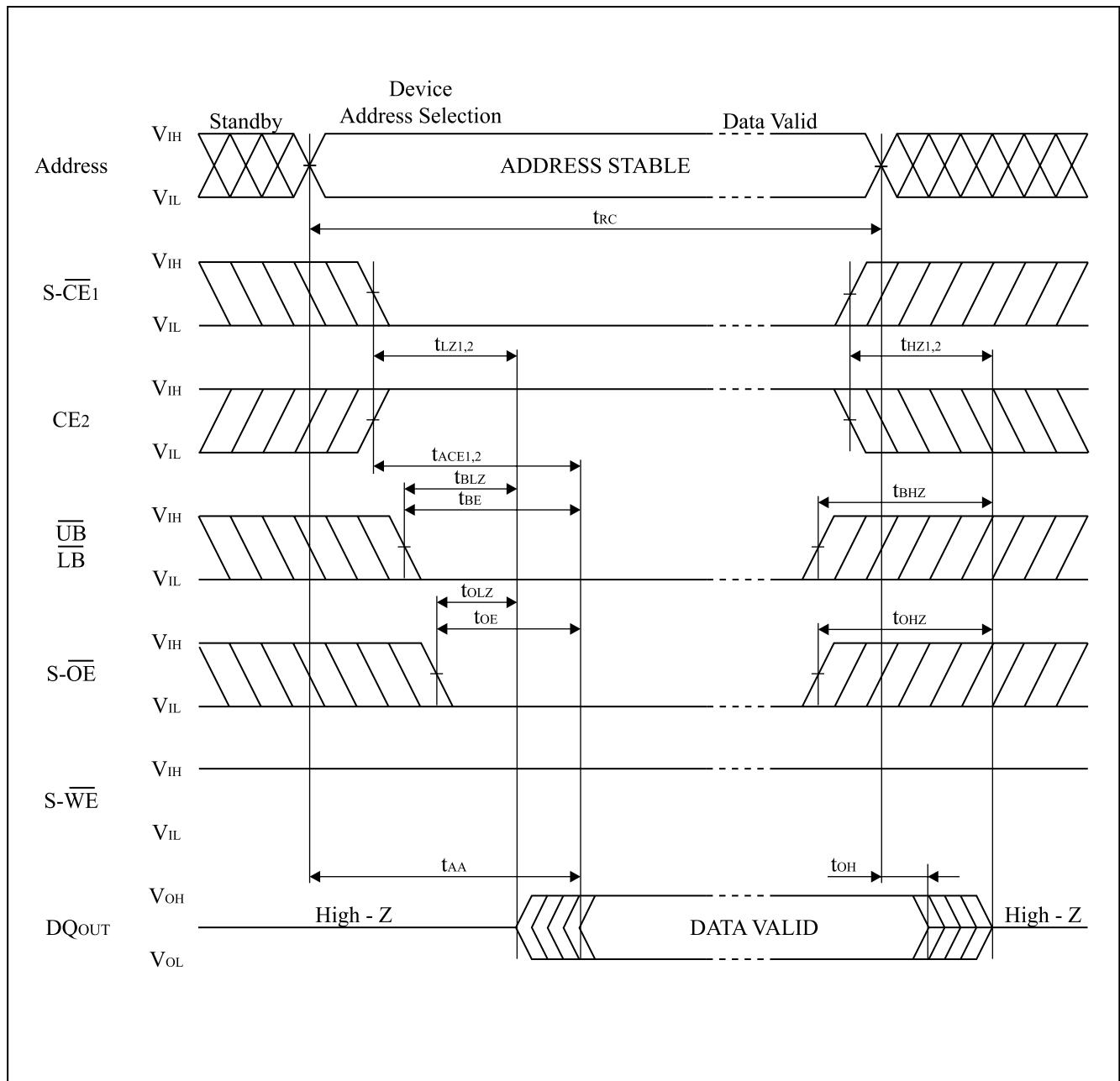
($T_A = -25^\circ\text{C}$ to $+85^\circ\text{C}$, $V_{CC} = 2.7\text{V}$ to 3.1V)

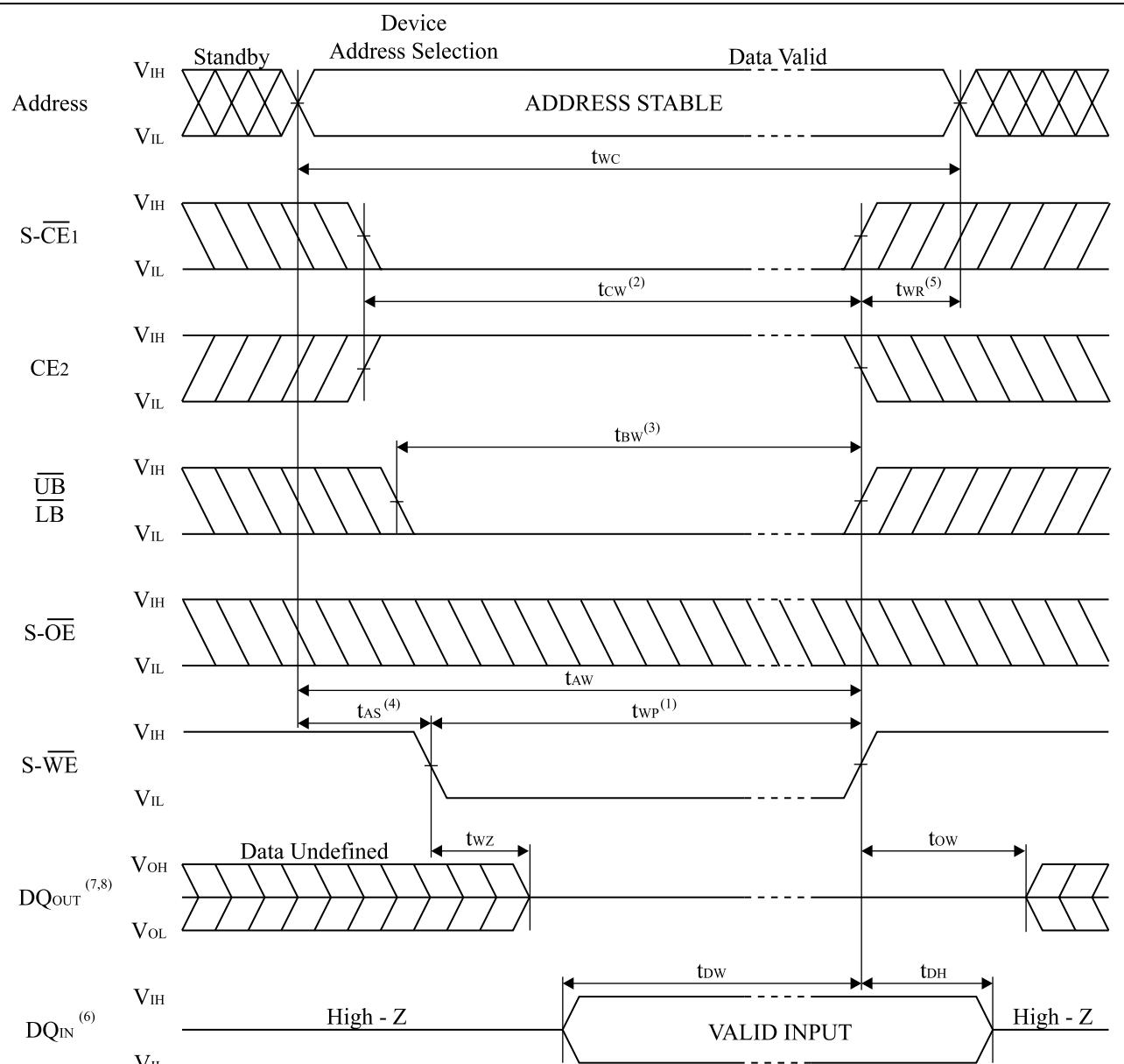
Symbol	Parameter	Notes	Min.	Max.	Unit
t_{RC}	Read Cycle Time		65		ns
t_{AA}	Address Access Time			65	ns
t_{ACE1}	Chip Enable Access Time ($S\cdot\overline{CE}_1$)			65	ns
t_{ACE2}	Chip Enable Access Time (CE_2)			65	ns
t_{BE}	Byte Enable Access Time			65	ns
t_{OE}	Output Enable to Output Valid			40	ns
t_{OH}	Output Hold from Address Change		10		ns
t_{LZ1}	$S\cdot\overline{CE}_1$ Low to Output Active	1	10		ns
t_{LZ2}	CE_2 High to Output Active	1	10		ns
t_{OLZ}	$S\cdot\overline{OE}$ Low to Output Active	1	5		ns
t_{BLZ}	\overline{UB} or \overline{LB} Low to Output Active	1	10		ns
t_{HZ1}	$S\cdot\overline{CE}_1$ High to Output in High-Z	1, 2	0	25	ns
t_{HZ2}	CE_2 Low to Output in High-Z	1, 2	0	25	ns
t_{OHZ}	$S\cdot\overline{OE}$ High to Output in High-Z	1, 2	0	25	ns
t_{BHZ}	\overline{UB} or \overline{LB} High to Output in High-Z	1, 2	0	25	ns

Notes:

1. Active output to High-Z and High-Z to output active tests specified for a $\pm 200\text{mV}$ transition from steady state levels into the test load.
2. The period from $S\cdot\overline{CE}_1$ Rise, \overline{UB} Rise, \overline{LB} Rise $S\cdot\overline{OE}$ Rise (CE_2 : Falling) to output buffer off is logically 10ns.

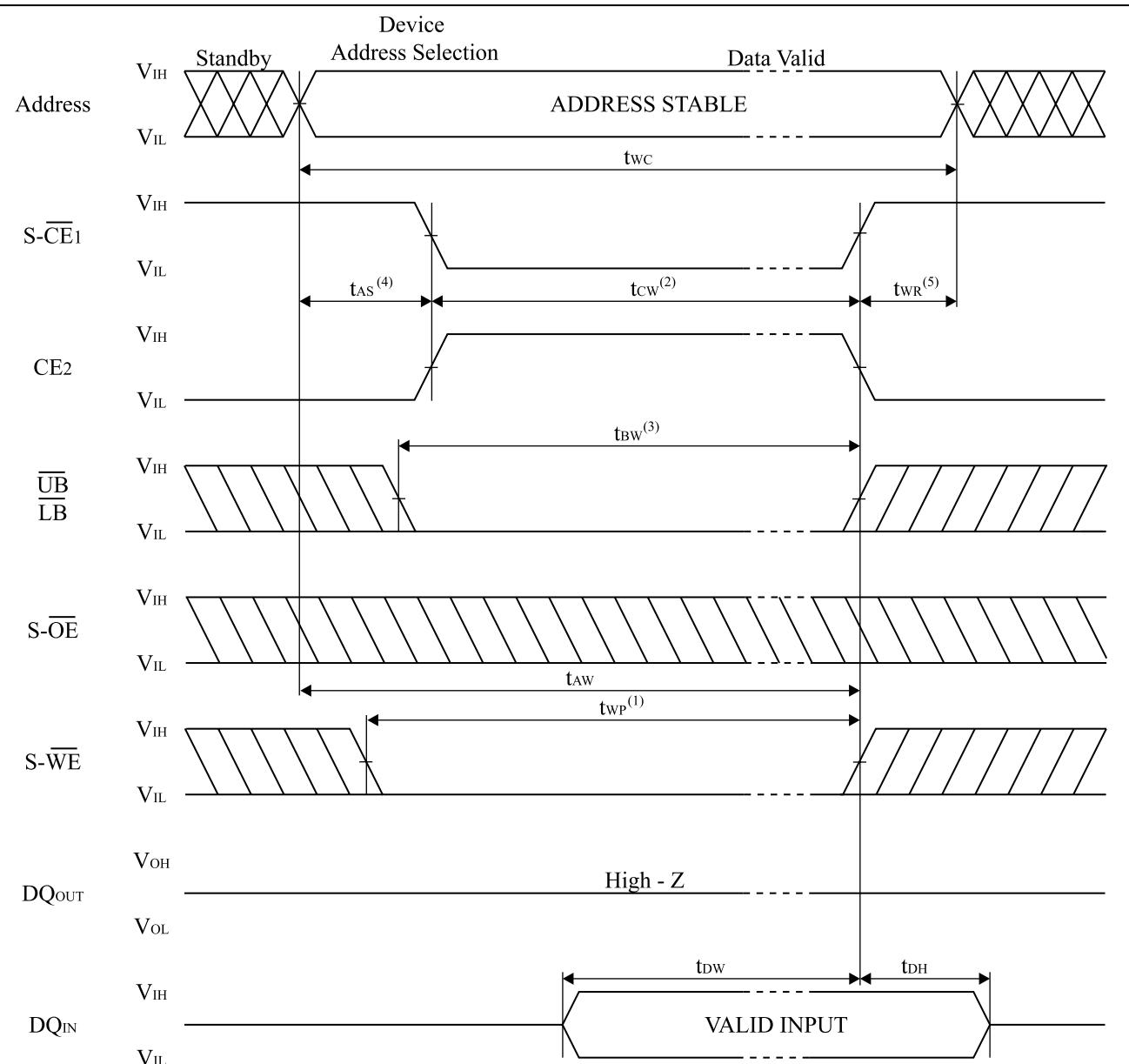
9.3.3 Write Cycle


 $(T_A = -25^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, V_{CC} = 2.7\text{V} \text{ to } 3.1\text{V})$


Symbol	Parameter	Notes	Min.	Max.	Unit
t_{WC}	Write Cycle Time		65		ns
t_{CW}	Chip Enable to End of Write		60		ns
t_{AW}	Address Valid to End of Write		60		ns
t_{BW}	Byte Select Time		60		ns
t_{AS}	Address Setup Time		0		ns
t_{WP}	Write Pulse Width		50		ns
t_{WR}	Write Recovery Time		0		ns
t_{DW}	Input Data Setup Time		30		ns
t_{DH}	Input Data Hold Time		0		ns
t_{OW}	S- \overline{WE} High to Output Active	1	5		ns
t_{WZ}	S- \overline{WE} Low to Output in High-Z	1	0	25	ns

Note:

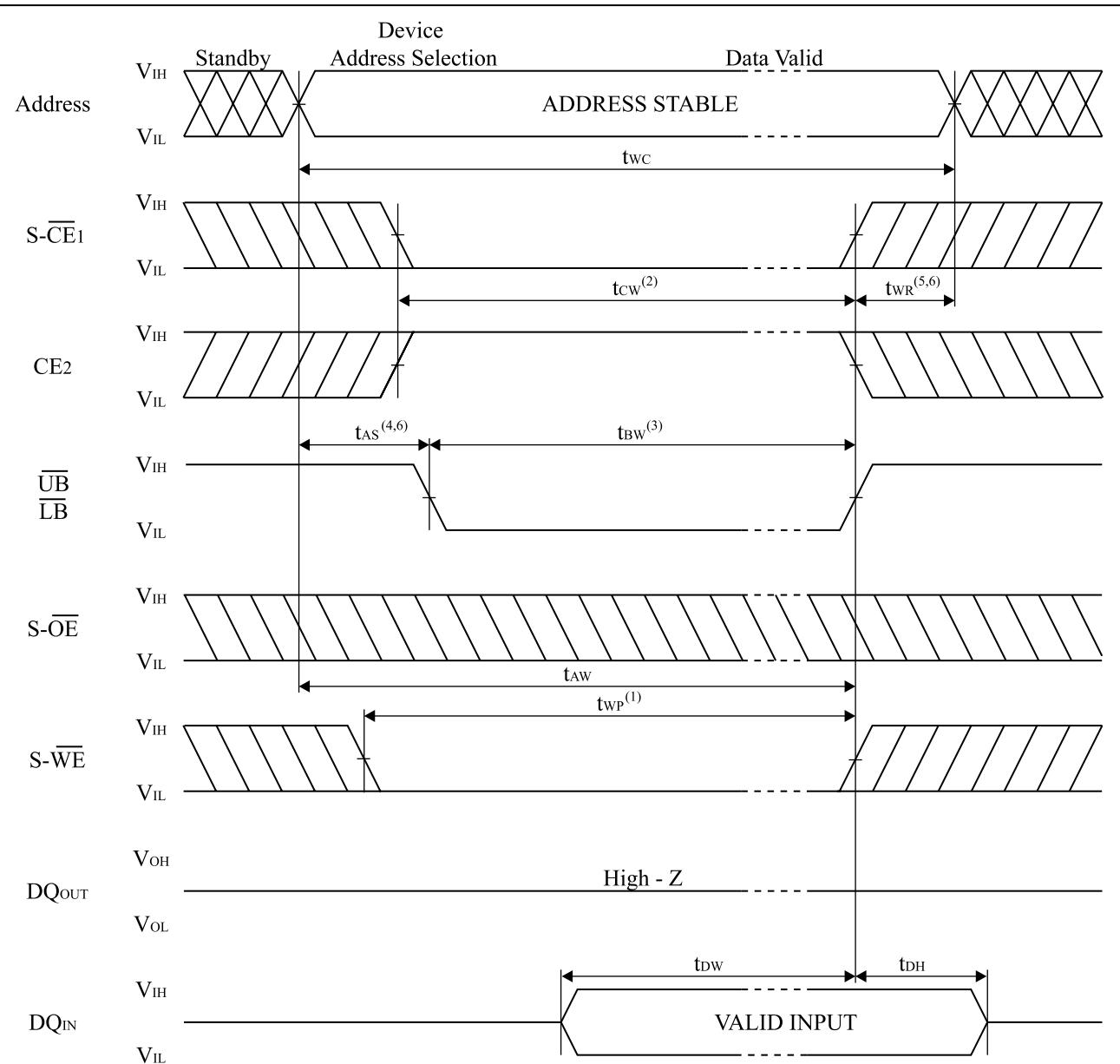
1. Active output to High-Z and High-Z to output active tests specified for a $\pm 200\text{mV}$ transition from steady state levels into the test load.


9.4 SRAM AC Characteristics Timing Chart

Read Cycle Timing Chart

Write Cycle Timing Chart (S-WE Controlled)

Notes:


1. A write occurs during the overlap of a low S-CE₁, a high CE₂ and a low S-WE.
A write begins at the latest transition among S-CE₁ going low, CE₂ going high and S-WE going low.
A write ends at the earliest transition among S-CE₁ going high, CE₂ going low and S-WE going high.
t_{WP} is measured from the beginning of write to the end of write.
2. t_{CW} is measured from the later of S-CE₁ going low or CE₂ going high to the end of write.
3. t_{BW} is measured from the time of going low UB or low LB to the end of write.
4. t_{AS} is measured from the address valid to beginning of write.
5. t_{WR} is measured from the end of write to the address change. t_{WR} applies in case a write ends at S-CE₁ going high, CE₂ going low or S-WE going high.
6. During this period DQ pins are in the output state, therefore the input signals of opposite phase to the outputs must not be applied.
7. If S-CE₁ goes low or CE₂ goes high simultaneously with S-WE going low or after S-WE going low, the outputs remain in high impedance state.
8. If S-CE₁ goes high or CE₂ goes low simultaneously with S-WE going high or before S-WE going high, the outputs remain in high impedance state.

Write Cycle Timing Chart (S- \overline{CE}_1 Controlled)

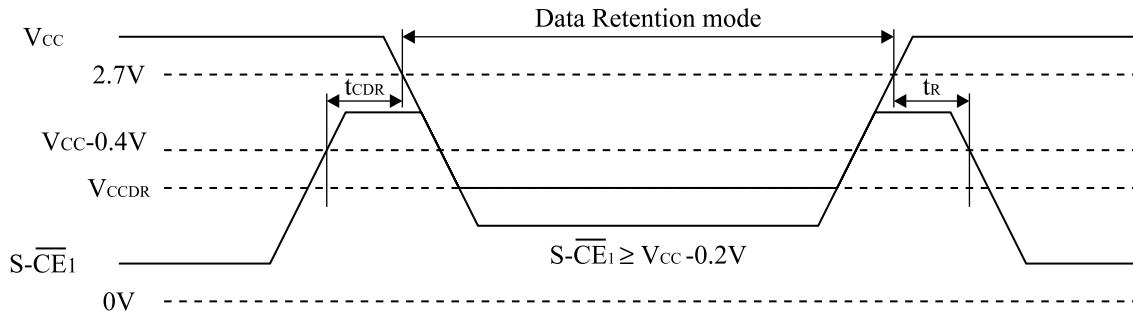
Notes:

1. A write occurs during the overlap of a low S- \overline{CE}_1 , a high CE₂ and a low S- \overline{WE} .
A write begins at the latest transition among S- \overline{CE}_1 going low, CE₂ going high and S- \overline{WE} going low.
A write ends at the earliest transition among S- \overline{CE}_1 going high, CE₂ going low and S- \overline{WE} going high.
 t_{WP} is measured from the beginning of write to the end of write.
2. t_{CW} is measured from the later of S- \overline{CE}_1 going low or CE₂ going high to the end of write.
3. t_{BW} is measured from the time of going low UB or low LB to the end of write.
4. t_{AS} is measured from the address valid to beginning of write.
5. t_{WR} is measured from the end of write to the address change. t_{WR} applies in case a write ends at S- \overline{CE}_1 going high, CE₂ going low or S- \overline{WE} going high.

Write Cycle Timing Chart (UB / LB Controlled)

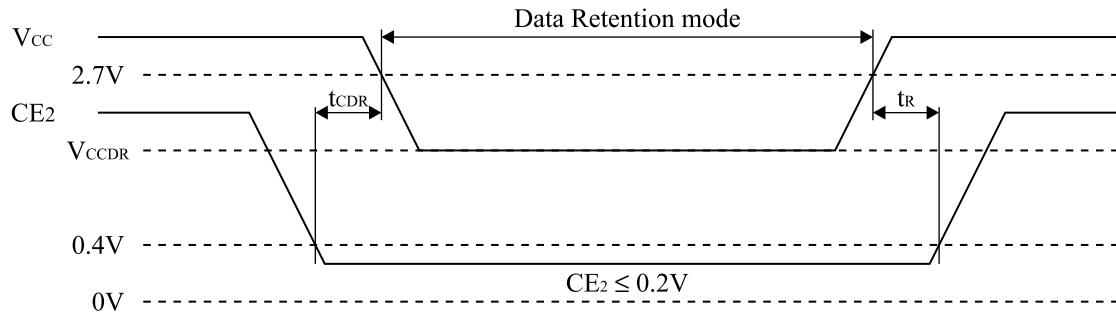
Notes:

1. A write occurs during the overlap of a low S-CE₁, a high CE₂ and a low S-WE. A write begins at the latest transition among S-CE₁ going low, CE₂ going high and S-WE going low. A write ends at the earliest transition among S-CE₁ going high, CE₂ going low and S-WE going high. t_{WP} is measured from the beginning of write to the end of write.
2. t_{CW} is measured from the later of S-CE₁ going low or CE₂ going high to the end of write.
3. t_{BW} is measured from the time of going low UB or low LB to the end of write.
4. t_{AS} is measured from the address valid to beginning of write.
5. t_{WR} is measured from the end of write to the address change. t_{WR} applies in case a write ends at S-CE₁ going high, CE₂ going low or S-WE going high.
6. UB and LB need to make the time of start of a cycle, and an end "high" level for reservation of t_{AS} and t_{WR}.


9.5 Data Retention Characteristics for SRAM

(T_A = -25°C to +85°C)

Symbol	Parameter	Note	Min.	Typ. ⁽¹⁾	Max.	Unit	Conditions
V _{CCDR}	Data Retention Supply voltage	2	1.5		3.1	V	S- \overline{CE}_1 , $CE_2 \geq V_{CC} - 0.2V$ or $CE_2 \leq 0.2V$, LB, UB $\geq V_{CC} - 0.2V$, $CE_2 \geq V_{CC} - 0.2V$ or S- $\overline{CE}_1 \leq 0.2V$
I _{CCDR}	Data Retention Supply current	2		2	25	μA	V _{CC} = 3.0V, S- \overline{CE}_1 , $CE_2 \geq V_{CC} - 0.2V$ or $CE_2 \leq 0.2V$, LB, UB $\geq V_{CC} - 0.2V$, $CE_2 \geq V_{CC} - 0.2V$ or S- $\overline{CE}_1 \leq 0.2V$
t _{CDR}	Chip enable setup time		0			ns	
t _R	Chip enable hold time		t _{RC}			ns	


Notes:

1. Reference value at T_A = 25°C, V_{CC} = 3.0V.
2. S- $\overline{CE}_1 \geq V_{CC} - 0.2V$, $CE_2 \geq V_{CC} - 0.2V$ (S- \overline{CE}_1 controlled) or $CE_2 \leq 0.2V$ (CE₂ controlled).

Data Retention Timing Chart (S- \overline{CE}_1 Controlled)⁽¹⁾

Note:

1. To control the data retention mode at S- \overline{CE}_1 , fix the input level of CE₂ between "V_{CCDR} and V_{CCDR}-0.2V" or "0V and 0.2V" during the data retention mode.

Data Retention Timing Chart (CE₂ Controlled)

10. Notes

This product is a stacked CSP package that a 64M (x16) bit Flash Memory, a 64M (x16) bit Flash Memory, a 32M (x16) bit Smartcombo RAM and a 8M (x16) bit SRAM are assembled into.

-Supply Power

Maximum difference (between F/SC-V_{CC} and S-V_{CC}) of the voltage is less than 0.3V.

-Power Supply and Chip Enable of Flash Memory, Smartcombo RAM and SRAM

Two or more chips among Flash memory (F₁, F₂), Smartcombo RAM and SRAM should not be active simultaneously.

If the two memories are active together, possibly they may not operate normally by interference noises or data collision on DQ bus.

Both F/SC-V_{CC} and S-V_{CC} are needed to be applied by the recommended supply voltage at the same time except Smartcombo RAM sleep mode and/or SRAM data retention mode.

-Power Up Sequence

When turning on Flash memory power supply, keep $\overline{\text{RST}}$ low. After F/SC-V_{CC} reaches over 2.7V, keep $\overline{\text{RST}}$ low for more than 100 nsec.

-Device Decoupling

This is a 4 chips stacked CSP package. When one of the chips is active, others are in standby mode. Therefor, these power supplies should be designed very carefully.

Exclusive power supply pins for each Memory and GND pin need careful decoupling of devices. Especially, note Flash Memory, Smartcombo RAM and SRAM peak current caused by transition of control signals.

When one of the Flash Memory is in busy mode, (page buffer) program, block erase and full chip erase command should not be inputted to the other (F₁-CE, F₂-CE, SC-CE₁, S-CE₁, CE₂).

11. Flash Memory Data Protection

Noises having a level exceeding the limit specified in the specification may be generated under specific operating conditions on some systems. Such noises, when induced onto F- \overline{WE} signal or power supply, may be interpreted as false commands and causes undesired memory updating. To protect the data stored in the flash memory against unwanted writing, systems operating with the flash memory should have the following write protect designs, as appropriate:

■ The below describes data protection method.

1. Protection of data in each block

- Any locked block by setting its block lock bit is protected against the data alteration. When \overline{WP} is low, any locked-down block by setting its block lock-down bit is protected from lock status changes. By using this function, areas can be defined, for example, program area (locked blocks), and data area (unlocked blocks).
- For detailed block locking scheme, see Section 6.2, 7.2 Command Definitions for Flash Memory.

2. Protection of data with V_{PP} control

- When the level of V_{PP} is lower than V_{PPLK} (V_{PP} lockout voltage), write functions to all blocks are disabled. All blocks are locked and the data in the blocks are completely protected.

3. Protection of data with \overline{RST}

- Especially during power transitions such as power-up and power-down, the flash memory enters reset mode by bringing \overline{RST} to low, which inhibits write operation to all blocks.
- For detailed description on \overline{RST} control, see Section 6.6.6, 7.6.6 AC Electrical Characteristics for Flash Memory, Reset Operations.

■ Protection against noises on F- \overline{WE} signal

To prevent the recognition of false commands as write commands, system designer should consider the method for reducing noises on F-WE signal.

12. Design Considerations

1. Power Supply Decoupling

To avoid a bad effect to the system by flash memory, Smartcombo RAM and SRAM power switching characteristics, each device should have a $0.1\mu\text{F}$ ceramic capacitor connected between F/SC-V_{CC} and GND, between V_{PP} and GND and between S-V_{CC} and GND.

Low inductance capacitors should be placed as close as possible to package leads.

2. V_{PP} Trace on Printed Circuit Boards

Updating the memory contents of flash memories that reside in the target system requires that the printed circuit board designer pay attention to the V_{PP} Power Supply trace. Use similar trace widths and layout considerations given to the F/SC-V_{CC} power bus.

3. The Inhibition of Overwrite Operation

Please do not execute reprogramming “0” for the bit which has already been programmed “0”. Overwrite operation may generate unerasable bit.

In case of reprogramming “0” to the data which has been programmed “1”.

- Program “0” for the bit in which you want to change data from “1” to “0”.
- Program “1” for the bit which has already been programmed “0”.

For example, changing data from “101110110111101” to “1010110110111100” requires “111011111111110” programing.

4. Power Supply

Block erase, full chip erase, (page buffer) program with an invalid V_{PP} (See Chapter 6.5, 7.5 DC Electrical Characteristics for Flash Memory) produce spurious results and should not be attempted.

Device operations at invalid F/SC-V_{CC} voltage (See Chapter 6.5, 7.5 DC Electrical Characteristics for Flash Memory, 8.2 DC Electrical Characteristics for Smartcombo RAM) produce spurious results and should not be attempted.

13. Related Document Information⁽¹⁾

Document No.	Document Name
FUM00701	LH28F320BF, LH28F640BF, LH28F128BF Series Appendix

Note:

1. International customers should contact their local SHARP or distribution sales offices.

14 Package and packing specification

1.Storage Conditions.

1-1.Storage conditions required before opening the dry packing.

- Normal temperature : 5~40°C
- Normal humidity : 80% R.H. max.

1-2.Storage conditions required after opening the dry packing.

In order to prevent moisture absorption after opening, ensure the following storage conditions apply:

(1) Storage conditions for one-time soldering. (Convection reflow^{*1}, IR/Convection reflow.^{*1})

- Temperature : 5~25°C
- Humidity : 60% R.H. max.
- Period : 96 hours max. after opening.

(2) Storage conditions for two-time soldering. (Convection reflow^{*1}, IR/Convection reflow.^{*1})

a. Storage conditions following opening and prior to performing the 1st reflow.

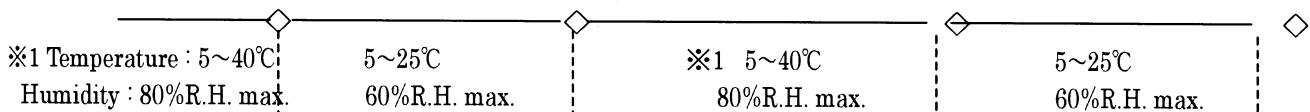
- Temperature : 5~25°C
- Humidity : 60% R.H. max.
- Period : 96 hours max. after opening.

b. Storage conditions following completion of the 1st reflow and prior to performing the 2nd reflow.

- Temperature : 5~25°C
- Humidity : 60% R.H. max.
- Period : 96 hours max. after completion of the 1st reflow.

^{*1}:Air or nitrogen environment.

1-3.Temporary storage after opening.


To re-store the devices before soldering, do so only once and use a dry box or place desiccant (with a blue humidity indicator) with the devices and perform dry packing again using heat-sealing.

The storage period, temperature and humidity must be as follows :

(1) Storage temperature and humidity.

※1 : External atmosphere temperature and humidity of the dry packing.

First opening ← X1 → Re-sealing ← Y → Re-opening ← X2 → Mounting

(2) Storage period.

- X1+X2 : Refer to Section 1-2(1) and (2)a , depending on the mounting method.
- Y : Two weeks max.

2. Baking Condition.

(1) Situations requiring baking before mounting.

- Storage conditions exceed the limits specified in Section 1-2 or 1-3.
- Humidity indicator in the desiccant was already red (pink) when opened.
(Also for re-opening.)

(2) Recommended baking conditions.

- Baking temperature and period :

120+10/-0°C for 1~3 hours.

- The above baking conditions apply since the trays are heat-resistant.

(3) Storage after baking.

- After baking, store the devices in the environment specified in Section 1-2 and mount immediately.

3. Surface mount conditions.

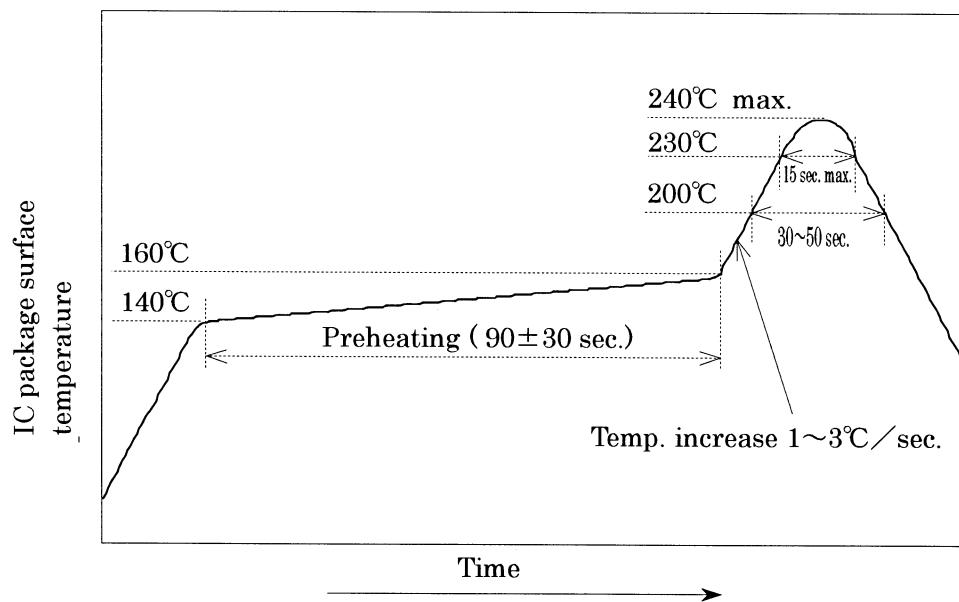
The following soldering condition are recommended to ensure device quality.

3-1. Soldering.

(1) Convection reflow or IR/Convection. (one-time soldering or two-time soldering in air or nitrogen environment)

- Temperature and period :

Peak temperature of 240°C max., above 230°C for 15 sec. max.


Above 200°C for 30~50 sec.

Preheat temperature of 140~160°C for 90±30 sec.

Temperature increase rate of 1~3°C/sec.

- Measuring point : IC package surface.

- Temperature profile :

4. Condition for removal of residual flux.

- (1) Ultrasonic washing power : 25 watts / liter max.
- (2) Washing time : Total 1 minute max.
- (3) Solvent temperature : 15~40°C

5. Package outline specification.

Refer to the attached drawing.

6. Markings.

6-1. Marking details. (The information on the package should be given as follows.)

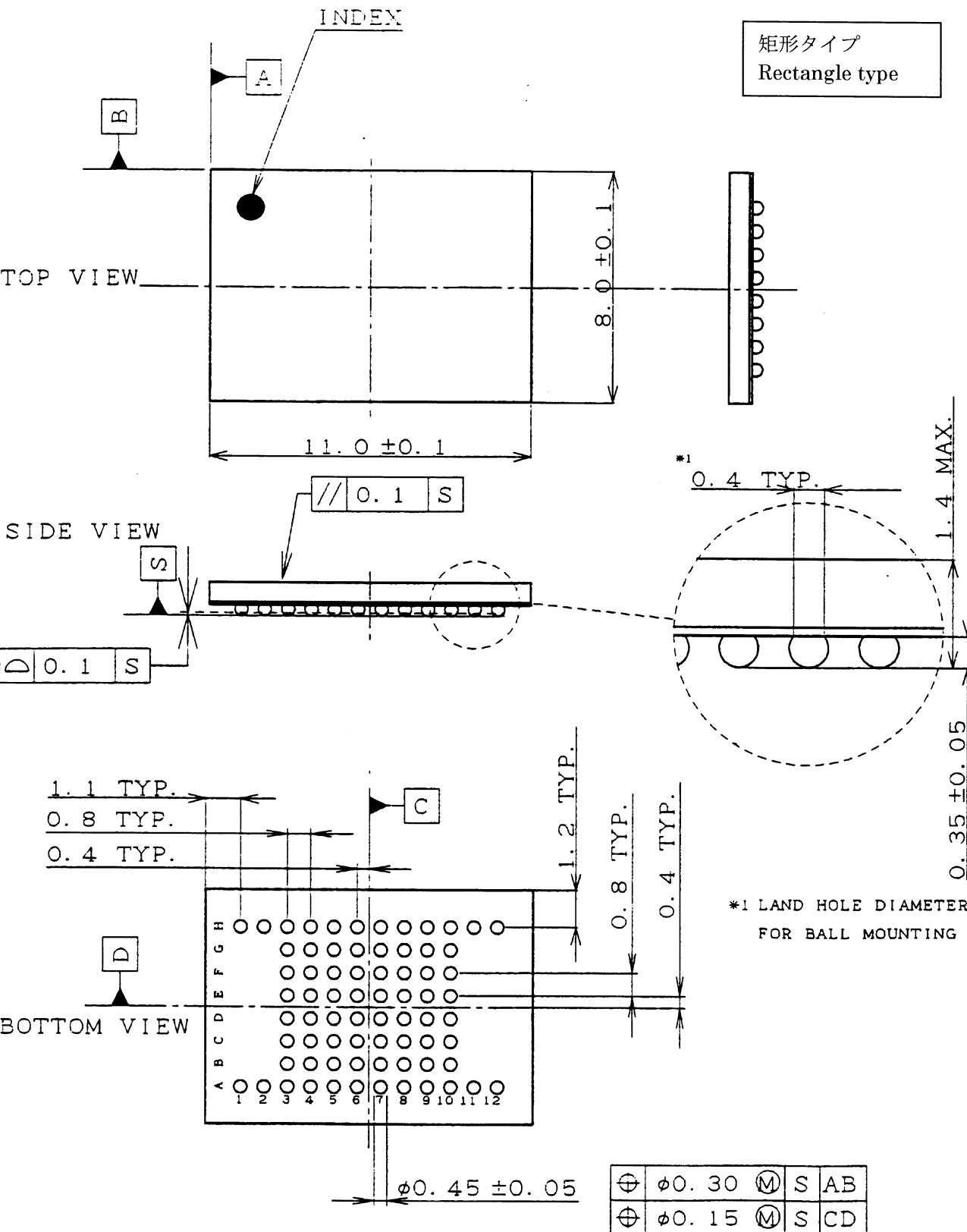
(1) Product name : LRS1B06

(2) Company name : S

(3) Date code

(Example) YY WW XXX

→ Denotes the production ref. code (1~3 digits).

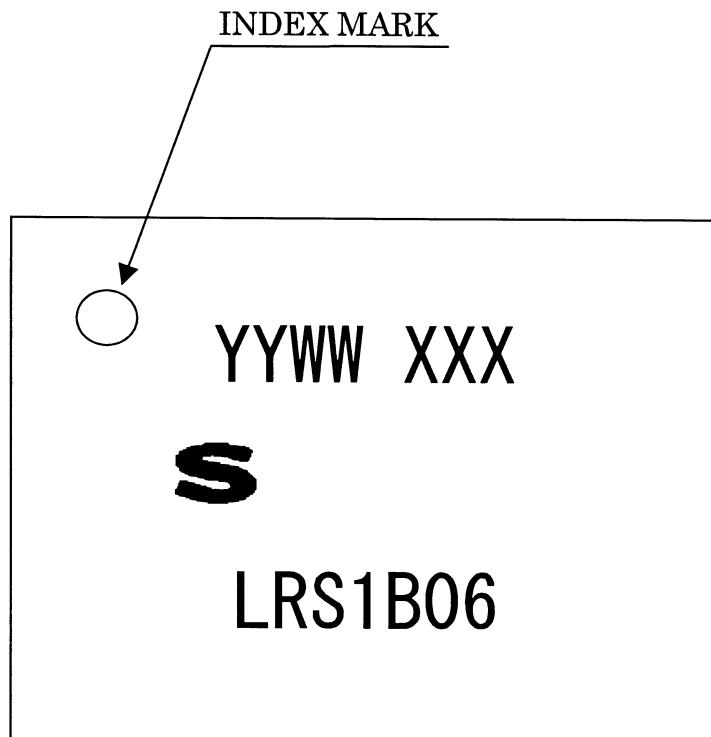

→ Denotes the production week. (01 • 02 • ~ • 52 • 53)

→ Denotes the production year. (Last two digits of the year)

6-2. Marking layout.

The layout is shown in the attached drawing.

(However, this layout does not specify the size of the marking character and marking position.)



名称 NAME	LFBGA072/064-P-0811 (LCSP072/064-P-0811)			備考 NOTE
DRAWING NO.	AA2149	UNIT	mm	

マークイメージ図

Marking image

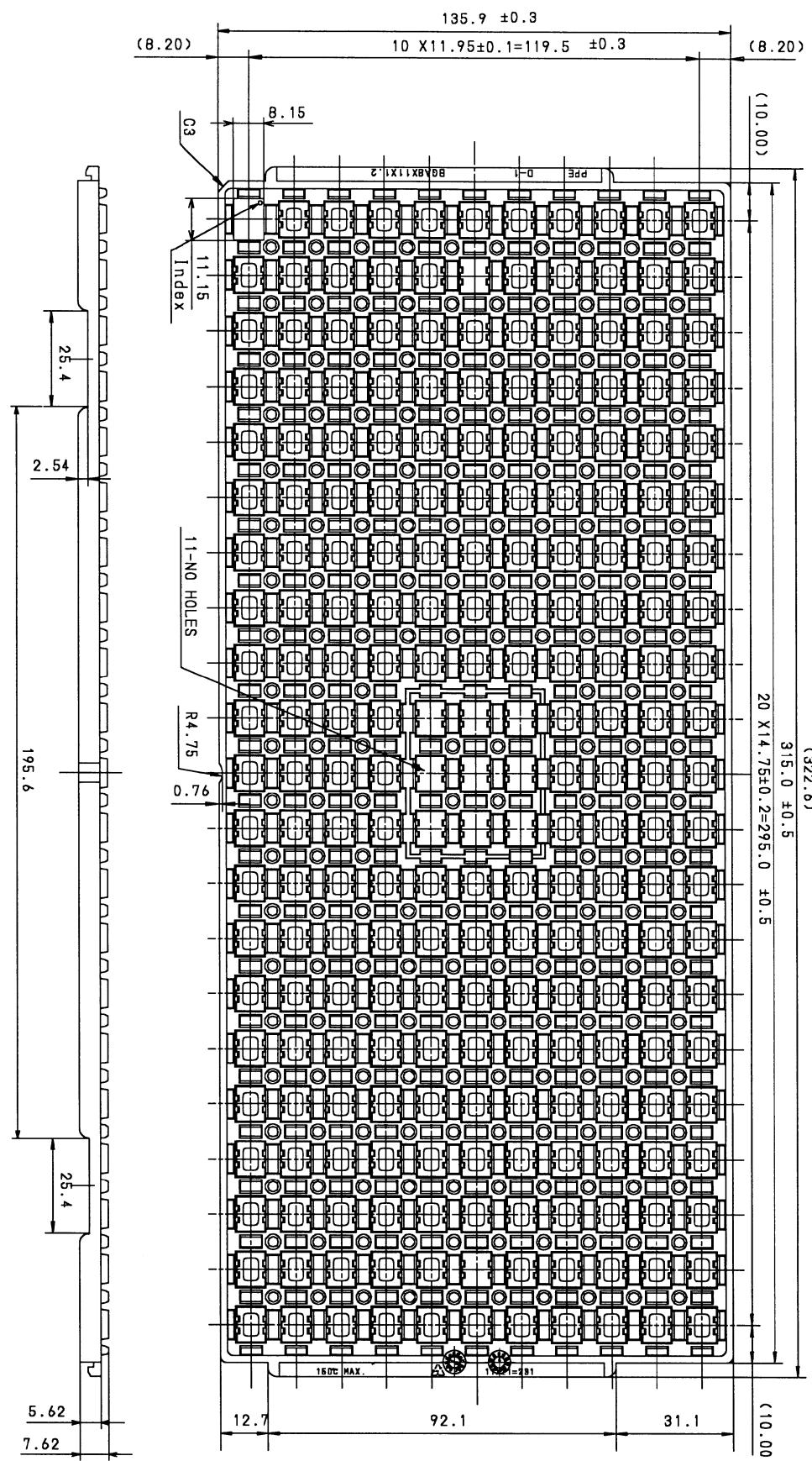
矩形タイプ
Rectangle type

7.Packing Specifications (Dry packing for surface mount packages.)**7-1.Packing materials.**

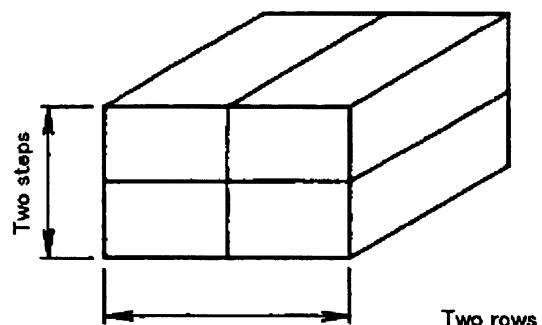
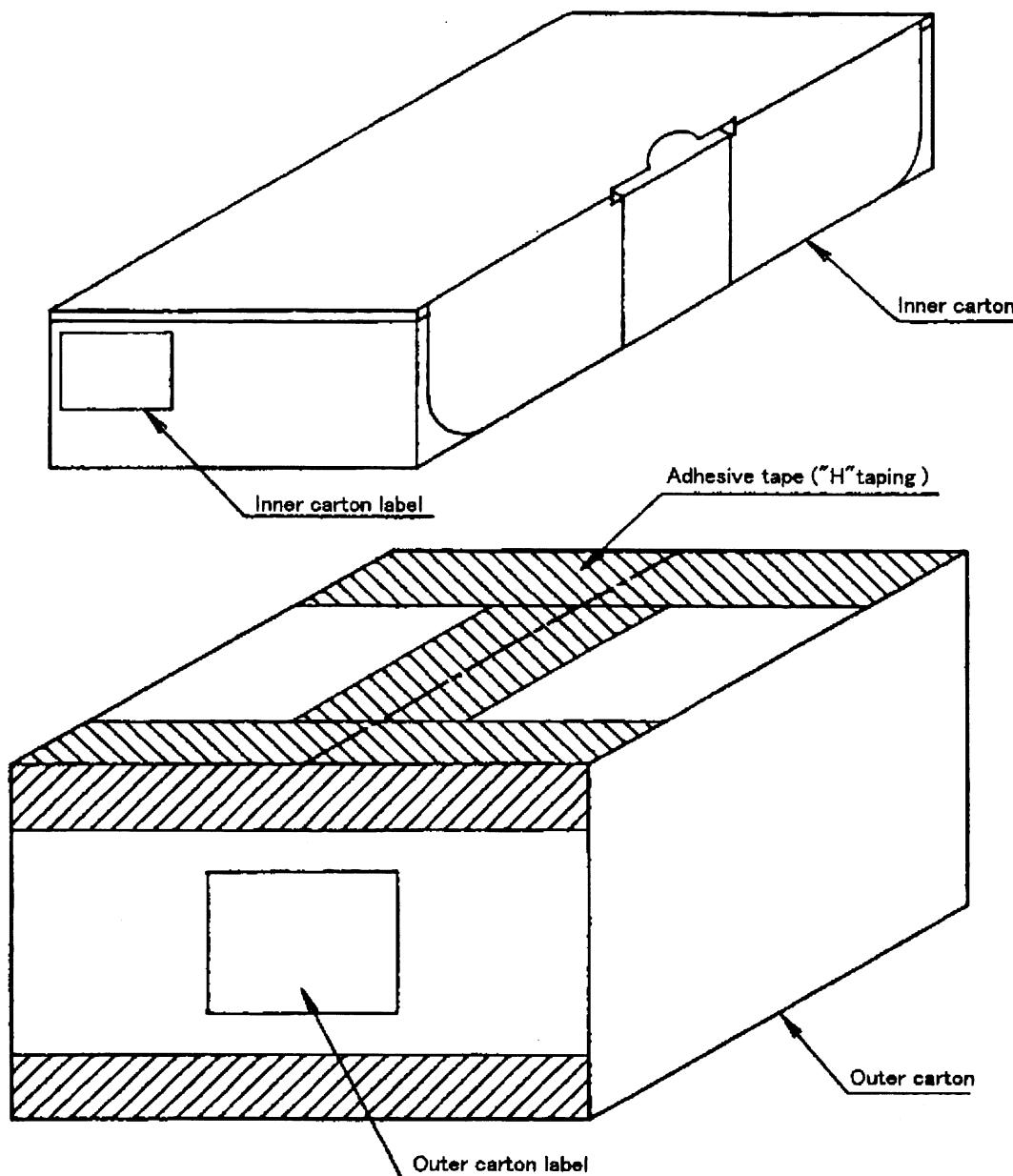
Material name	Material specifications	Purpose
Inner carton	Cardboard (2310 devices / inner carton max.)	Packing the devices. (10 trays / inner carton)
Tray	Conductive plastic (231 devices / tray)	Securing the devices.
Upper cover tray	Conductive plastic (1 tray / inner carton)	Securing the devices.
Laminated aluminum bag	Aluminum polyethylene	Keeping the devices dry.
Desiccant	Silica gel	Keeping the devices dry.
Label	Paper	Indicates part number, quantity, and packed date.
PP band	Polypropylene (3 pcs. / inner carton)	Securing the devices.
Outer carton	Cardboard (9240 devices / outer carton max.)	Outer packing.

(Devices must be placed on the tray in the same direction.)

7-2. Outline dimension of tray.


Refer to the attached drawing.

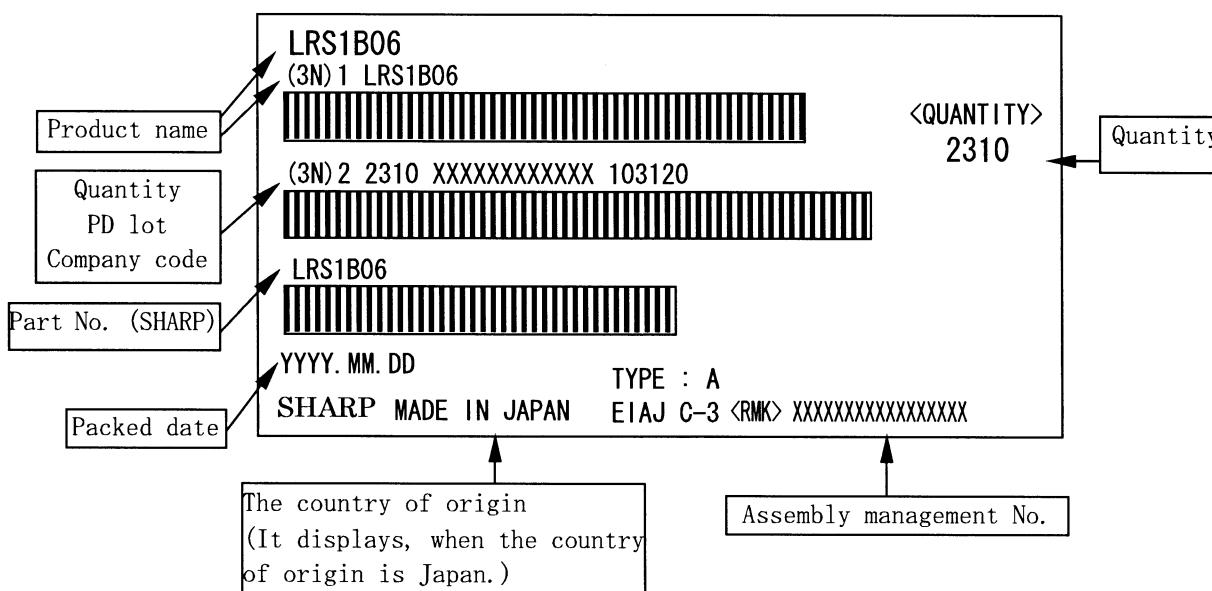
7-3. Outline dimension of carton.



Refer to the attached drawing.

8. Precautions for use.

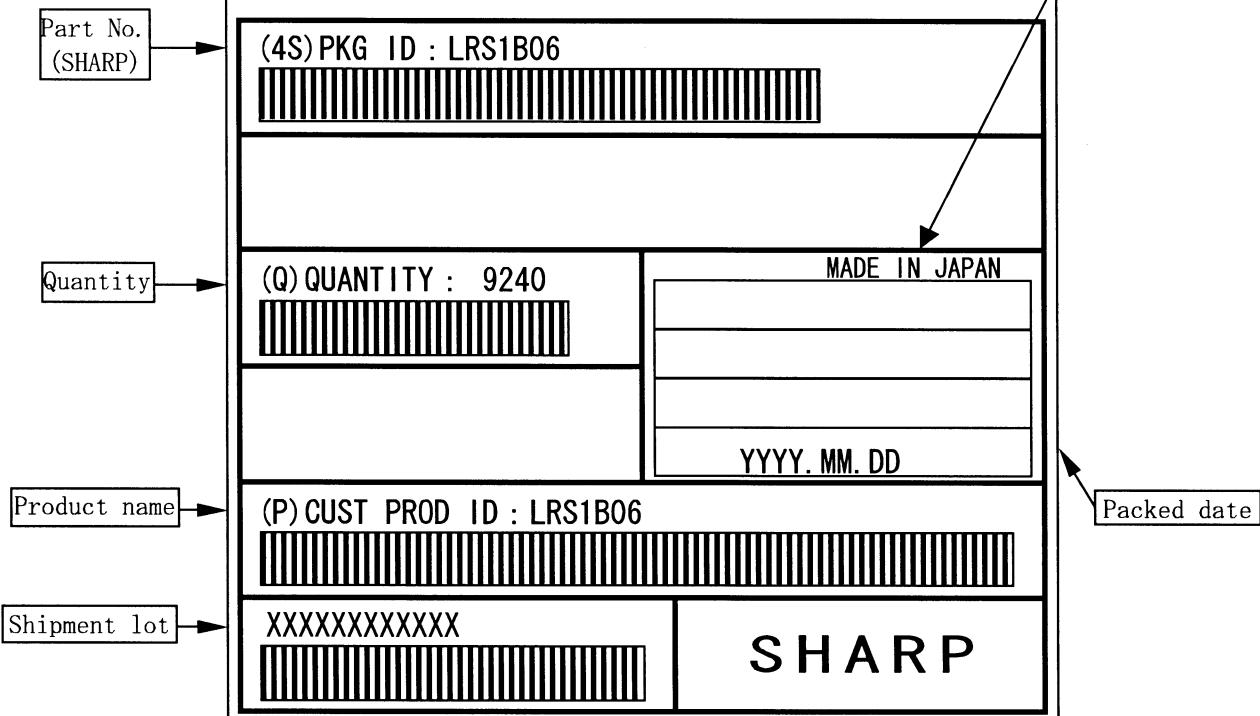
- (1) Opening must be done on an anti-ESD treated workbench.
All workers must also have undergone anti-ESD treatment.
- (2) The trays have undergone either conductive or anti-ESD treatment.
If another tray is used, make sure it has also undergone conductive or anti-ESD treatment.
- (3) The devices should be mounted the devices within one year of the date of delivery.

名称 NAME	BGA8X11X1.2		備考 NOTE	
DRAWING NO.	CV867	UNIT	mm	

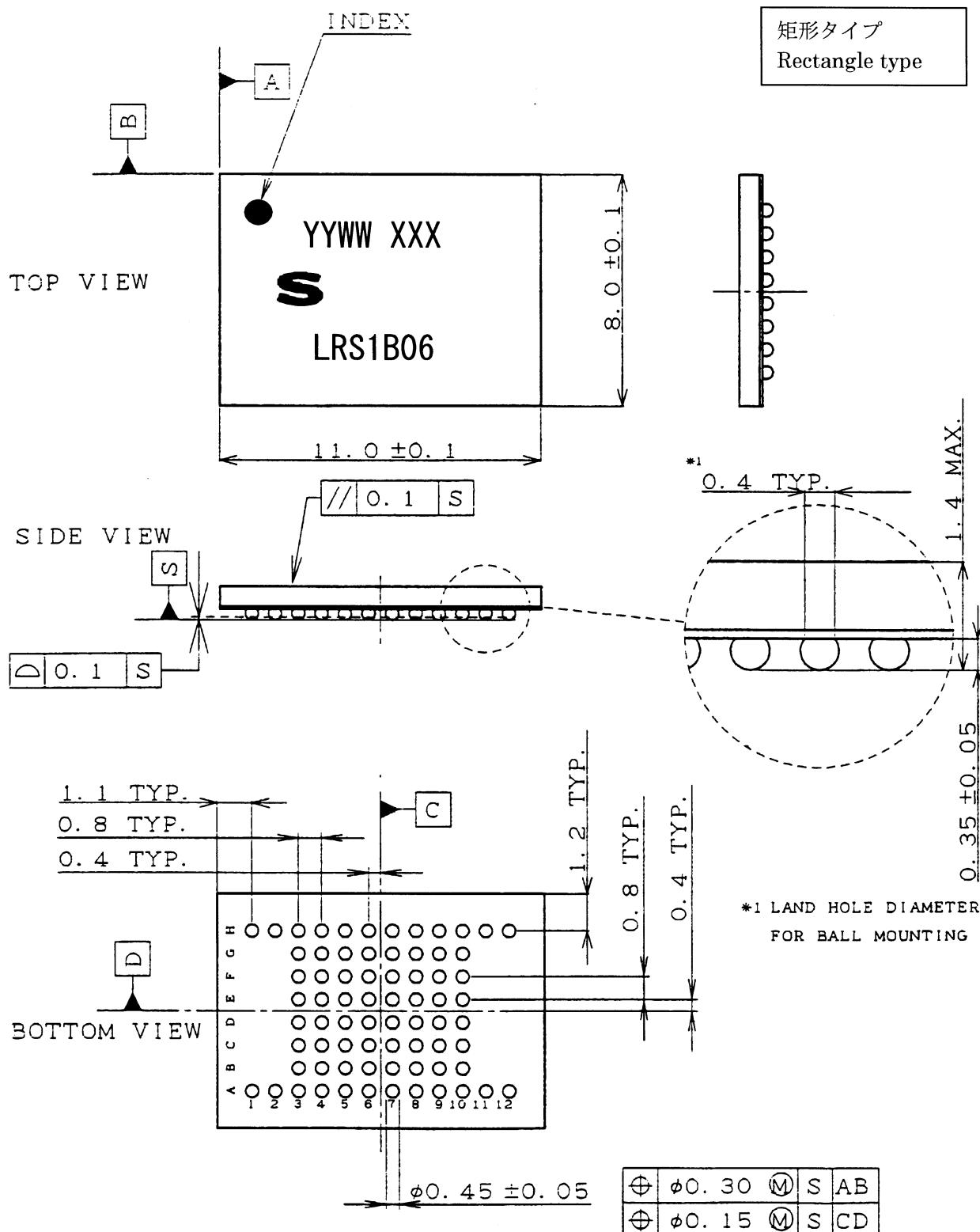

$L \times W \times H$

Inner carton - Outer dimensions : $348 \times 152 \times 90$

Outer carton - Outer dimensions : $350 \times 335 \times 215$


名称 NAME	トレイ品 包装仕様 Packing specifications			備考 NOTE	出荷数量が端数の場合、本仕様と異なることがあります。 There is a possibility different from this specification when the number of shipments is fractions.
DRAWING NO.	BJ433J	UNIT	mm		

Inner carton label


Outer carton label

The country of origin
(It displays, when the country of origin is Japan.)

(Former) EIAJ B Standard conforming

イメージ図 (Image)

名称 NAME	LFBGA072/064-P-0811 (LCSP072/064-P-0811)			備考 NOTE
DRAWING NO.	AA2149	単位 UNIT	mm	

LRS1B06 Flash MEMORY ERRATA

1. AC Characteristics

PROBLEM

The table below summarizes the AC characteristics.

AC Characteristics - Write Operations

$V_{CC}=2.7V-3.1V$

Page	Symbol	Parameter	Min.	Max.	Unit
22, 43	t_{AVAV}	Write Cycle Time	75		ns
22, 43	t_{WHWL} (t_{EHEL})	F- \overline{WE} (F- \overline{CE}) Pulse Width High	25		ns

WORKAROUND

System designers should consider these specifications.

STATUS

This is intended to be fixed in future devices.

A-1 RECOMMENDED OPERATING CONDITIONS

A-1.1 At Device Power-Up

AC timing illustrated in Figure A-1 is recommended for the supply voltages and the control signals at device power-up. If the timing in the figure is ignored, the device may not operate correctly.

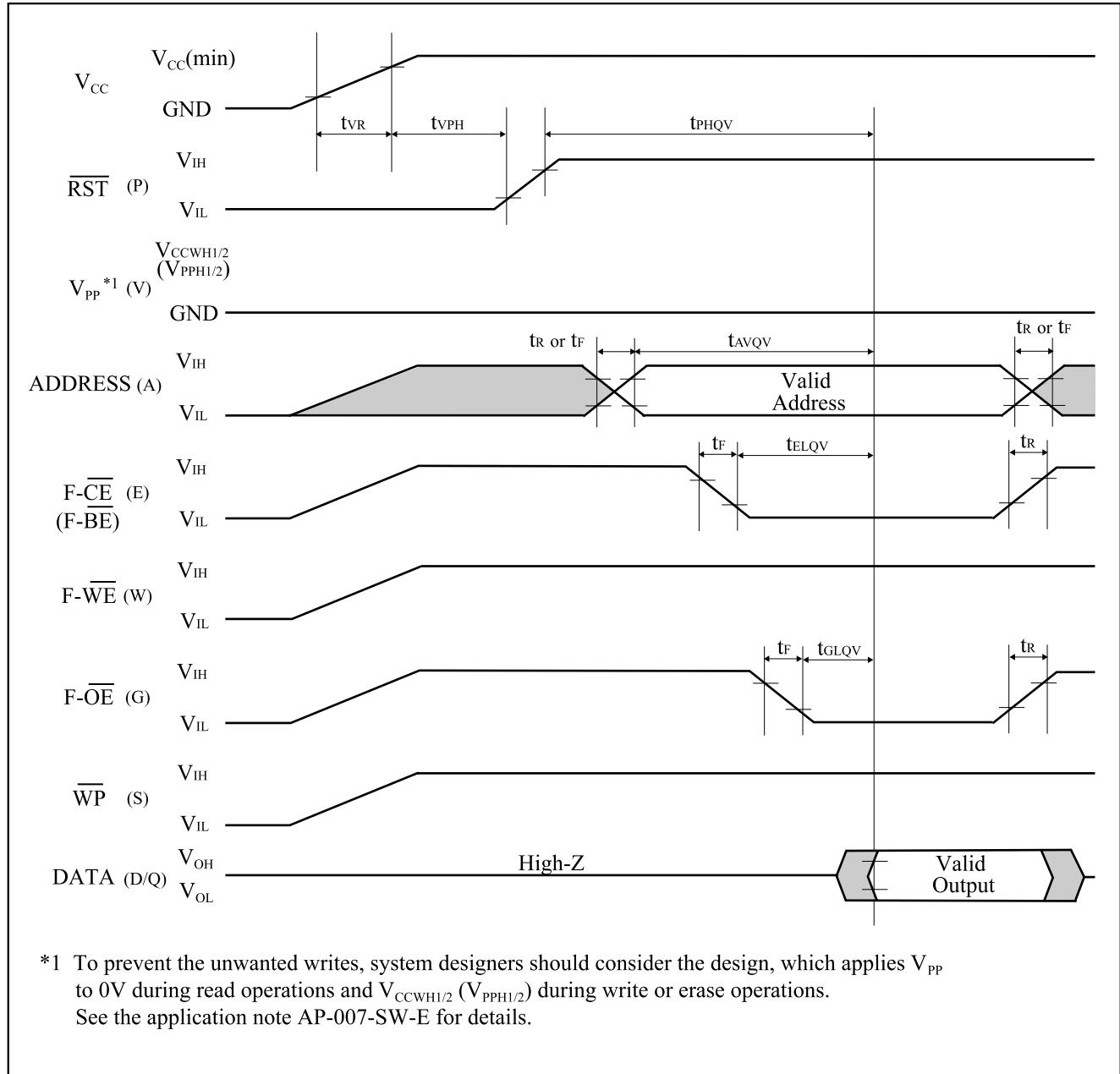


Figure A-1. AC Timing at Device Power-Up

For the AC specifications t_{VR}, t_R, t_F in the figure, refer to the next page. See the “AC Electrical Characteristics for Flash Memory” described in specifications for the supply voltage range, the operating temperature and the AC specifications not shown in the next page.

A-1.1.1 Rise and Fall Time

Symbol	Parameter	Notes	Min.	Max.	Unit
t_{VR}	V_{CC} Rise Time	1	0.5	30000	$\mu\text{s}/\text{V}$
t_R	Input Signal Rise Time	1, 2		1	$\mu\text{s}/\text{V}$
t_F	Input Signal Fall Time	1, 2		1	$\mu\text{s}/\text{V}$

NOTES:

1. Sampled, not 100% tested.
2. This specification is applied for not only the device power-up but also the normal operations.

A-1.2 Glitch Noises

Do not input the glitch noises which are below V_{IH} (Min.) or above V_{IL} (Max.) on address, data, reset, and control signals, as shown in Figure A-2 (b). The acceptable glitch noises are illustrated in Figure A-2 (a).

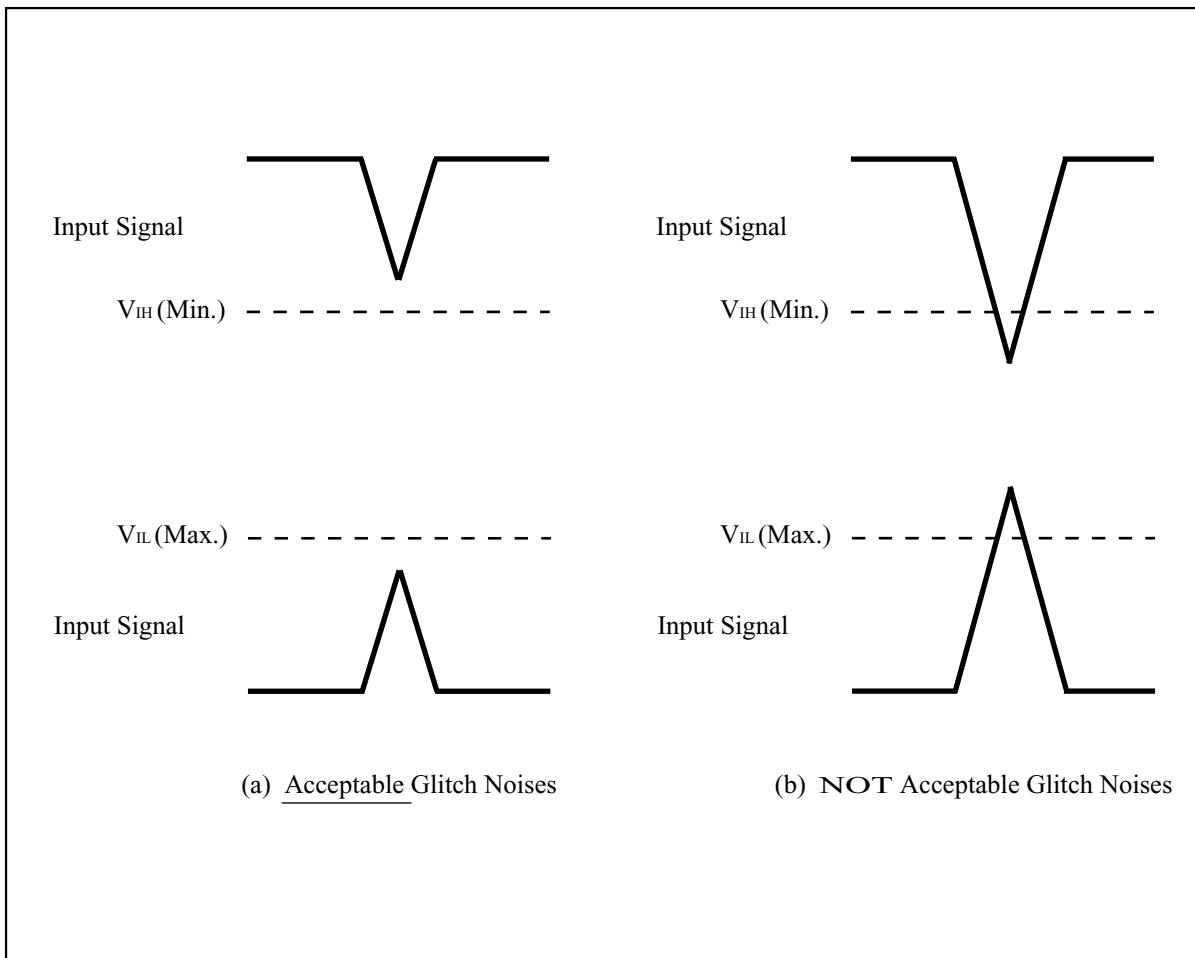


Figure A-2. Waveform for Glitch Noises

See the "DC Electrical Characteristics" described in specifications for V_{IH} (Min.) and V_{IL} (Max.).

A-2 RELATED DOCUMENT INFORMATION⁽¹⁾

Document No.	Document Name
AP-001-SD-E	Flash Memory Family Software Drivers
AP-006-PT-E	Data Protection Method of SHARP Flash Memory
AP-007-SW-E	RP#, V _{PP} Electric Potential Switching Circuit

NOTE:

1. International customers should contact their local SHARP or distribution sales office.

A-3 STATUS REGISTER READ OPERATIONS

If AC timing for reading the status register described in specifications is not satisfied, a system processor can check the status register bit SR.15 instead of SR.7 to determine when the erase or program operation has been completed.

Table A-3-1. Status Register Definition (SR.15 and SR.7)

	NOTES:
<p>SR.15 = WRITE STATE MACHINE STATUS: (DQ₁₅)</p> <p>1 = Ready in All Partitions 0 = Busy in Any Partition</p>	SR.15 indicates the status of WSM (Write State Machine). If SR.15="0", erase or program operation is in progress in any partition.
<p>SR.7 = WRITE STATE MACHINE STATUS FOR EACH PARTITION: (DQ₇)</p> <p>1 = Ready in the Addressed Partition 0 = Busy in the Addressed Partition</p>	SR.7 indicates the status of the partition. If SR.7="0", erase or program operation is in progress in the addressed partition. Even if the SR.7 is "1", the WSM may be occupied by the other partition.

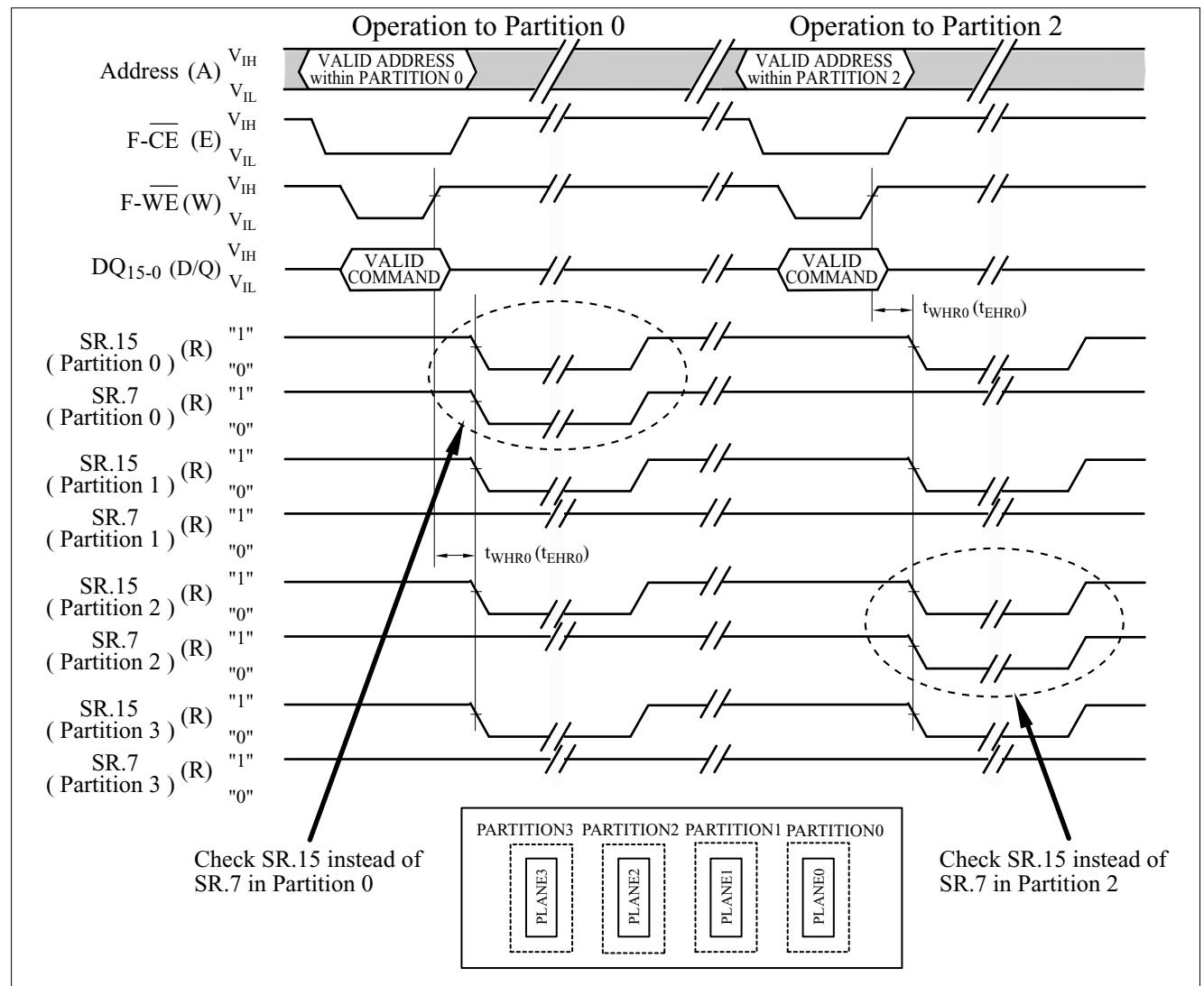
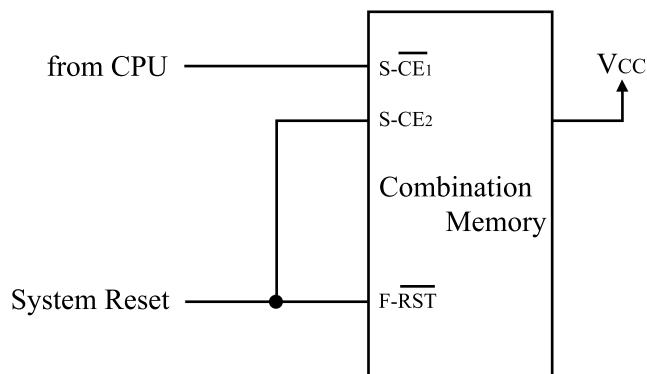
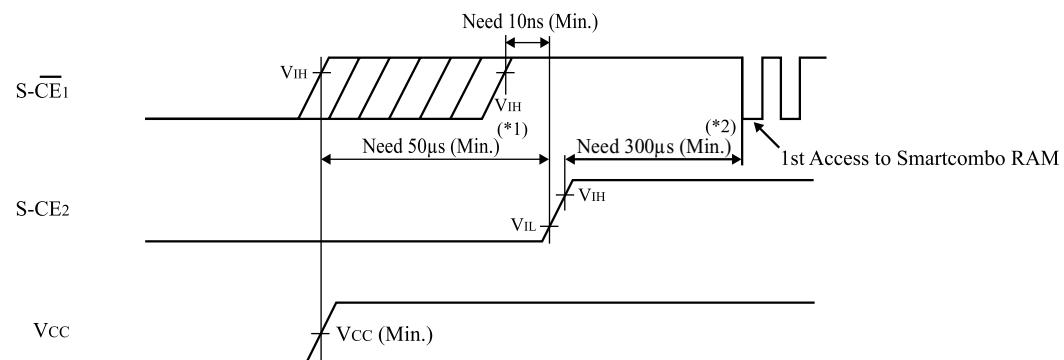


Figure A-3-1. Example of Checking the Status Register
(In this example, the device contains four partitions.)

B-1 POWER UP SEQUENCE OF Smartcombo RAM


When turning on Smartcombo RAM power supply, the following sequence is needed.

B-1.1 Sequence of Smartcombo RAM Power Supply


- (1) Supply power.
- (2) Keep S-CE₂ low longer than or equal to 50μs. (See NOTES *1)
- (3) Keep S-CE₁ and S-CE₂ high longer than or equal to 300μs. (See NOTES *2)
- (4) End of Initialization.

By executing above (1) to (4), the initialization of chip inside and the power occurred inside become stable.

<Example of the actual connection>

Add “300μs (*2) wait routine” by software before the first Smartcombo RAM access.

NOTES:

*1) Connect System Reset signal to S-CE₂ and hold S-CE₂ low longer than or equal to 50μs.

*2) By adding “300μs Wait Routine” (S-CE₁ and S-CE₂ high) in the software, delay the first access to Smartcombo RAM longer than or equal to 300μs.

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Suggested applications (if any) are for standard use; See Important Restrictions for limitations on special applications. See Limited Warranty for SHARP's product warranty. The Limited Warranty is in lieu, and exclusive of, all other warranties, express or implied. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY EXCLUDED. In no event will SHARP be liable, or in any way responsible, for any incidental or consequential economic or property damage.

NORTH AMERICA

SHARP Microelectronics of the Americas
5700 NW Pacific Rim Blvd.
Camas, WA 98607, U.S.A.
Phone: (1) 360-834-2500
Fax: (1) 360-834-8903
Fast Info: (1) 800-833-9437
www.sharpsma.com

EUROPE

SHARP Microelectronics Europe
Division of Sharp Electronics (Europe) GmbH
Sonninstrasse 3
20097 Hamburg, Germany
Phone: (49) 40-2376-2286
Fax: (49) 40-2376-2232
www.sharpsme.com

JAPAN

SHARP Corporation
Electronic Components & Devices
22-22 Nagaike-cho, Abeno-Ku
Osaka 545-8522, Japan
Phone: (81) 6-6621-1221
Fax: (81) 6117-725300/6117-725301
www.sharp-world.com

TAIWAN

SHARP Electronic Components
(Taiwan) Corporation
8F-A, No. 16, Sec. 4, Nanking E. Rd.
Taipei, Taiwan, Republic of China
Phone: (886) 2-2577-7341
Fax: (886) 2-2577-7326/2-2577-7328

SINGAPORE

SHARP Electronics (Singapore) PTE., Ltd.
438A, Alexandra Road, #05-01/02
Alexandra Technopark,
Singapore 119967
Phone: (65) 271-3566
Fax: (65) 271-3855

KOREA

SHARP Electronic Components
(Korea) Corporation
RM 501 Geosung B/D, 541
Dohwa-dong, Mapo-ku
Seoul 121-701, Korea
Phone: (82) 2-711-5813 ~ 8
Fax: (82) 2-711-5819

CHINA

SHARP Microelectronics of China
(Shanghai) Co., Ltd.
28 Xin Jin Qiao Road King Tower 16F
Pudong Shanghai, 201206 P.R. China
Phone: (86) 21-5854-7710/21-5834-6056
Fax: (86) 21-5854-4340/21-5834-6057
Head Office:
No. 360, Bashen Road,
Xin Development Bldg. 22
Waigaoqiao Free Trade Zone Shanghai
200131 P.R. China
Email: smc@china.global.sharp.co.jp

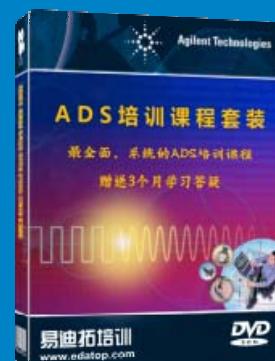
HONG KONG

SHARP-ROXY (Hong Kong) Ltd.
3rd Business Division,
17/F, Admiralty Centre, Tower 1
18 Harcourt Road, Hong Kong
Phone: (852) 28229311
Fax: (852) 28660779
www.sharp.com.hk
Shenzhen Representative Office:
Room 13B1, Tower C,
Electronics Science & Technology Building
Shen Nan Zhong Road
Shenzhen, P.R. China
Phone: (86) 755-3273731
Fax: (86) 755-3273735

射 频 和 天 线 设 计 培 训 课 程 推 荐

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立，致力并专注于微波、射频、天线设计研发人才的培养；我们于 2006 年整合合并微波 EDA 网(www.mweda.com)，现已发展成为国内最大的微波射频和天线设计人才培养基地，成功推出多套微波射频以及天线设计经典培训课程和 ADS、HFSS 等专业软件使用培训课程，广受客户好评；并先后与人民邮电出版社、电子工业出版社合作出版了多本专业图书，帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、研通高频、埃威航电、国人通信等多家国内知名公司，以及台湾工业技术研究院、永业科技、全一电子等多家台湾地区企业。

易迪拓培训课程列表：<http://www.edatop.com/peixun/rfe/129.html>


射频工程师养成培训课程套装

该套装精选了射频专业基础培训课程、射频仿真设计培训课程和射频电路测量培训课程三个类别共 30 门视频培训课程和 3 本图书教材；旨在引领学员全面学习一个射频工程师需要熟悉、理解和掌握的专业知识和研发设计能力。通过套装的学习，能够让学员完全达到和胜任一个合格的射频工程师的要求…

课程网址：<http://www.edatop.com/peixun/rfe/110.html>

ADS 学习培训课程套装

该套装是迄今国内最全面、最权威的 ADS 培训教程，共包含 10 门 ADS 学习培训课程。课程是由具有多年 ADS 使用经验的微波射频与通信系统设计领域资深专家讲解，并多结合设计实例，由浅入深、详细而又全面地讲解了 ADS 在微波射频电路设计、通信系统设计和电磁仿真设计方面的内容。能让您在最短的时间内学会使用 ADS，迅速提升个人技术能力，把 ADS 真正应用到实际研发工作中去，成为 ADS 设计专家…

课程网址：<http://www.edatop.com/peixun/ads/13.html>

HFSS 学习培训课程套装

该套课程套装包含了本站全部 HFSS 培训课程，是迄今国内最全面、最专业的 HFSS 培训教程套装，可以帮助您从零开始，全面深入学习 HFSS 的各项功能和在多个方面的工程应用。购买套装，更可超值赠送 3 个月免费学习答疑，随时解答您学习过程中遇到的棘手问题，让您的 HFSS 学习更加轻松顺畅…

课程网址：<http://www.edatop.com/peixun/hfss/11.html>

CST 学习培训课程套装

该培训套装由易迪拓培训联合微波 EDA 网共同推出, 是最全面、系统、专业的 CST 微波工作室培训课程套装, 所有课程都由经验丰富的专家授课, 视频教学, 可以帮助您从零开始, 全面系统地学习 CST 微波工作的各项功能及其在微波射频、天线设计等领域的设计应用。且购买该套装, 还可超值赠送 3 个月免费学习答疑…

课程网址: <http://www.edatop.com/peixun/cst/24.html>

HFSS 天线设计培训课程套装

套装包含 6 门视频课程和 1 本图书, 课程从基础讲起, 内容由浅入深, 理论介绍和实际操作讲解相结合, 全面系统的讲解了 HFSS 天线设计的全过程。是国内最全面、最专业的 HFSS 天线设计课程, 可以帮助您快速学习掌握如何使用 HFSS 设计天线, 让天线设计不再难…

课程网址: <http://www.edatop.com/peixun/hfss/122.html>

13.56MHz NFC/RFID 线圈天线设计培训课程套装

套装包含 4 门视频培训课程, 培训将 13.56MHz 线圈天线设计原理和仿真设计实践相结合, 全面系统地讲解了 13.56MHz 线圈天线的工作原理、设计方法、设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体操作, 同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试。通过该套课程的学习, 可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹配电路的原理、设计和调试…

详情浏览: <http://www.edatop.com/peixun/antenna/116.html>

我们的课程优势:

- ※ 成立于 2004 年, 10 多年丰富的行业经验,
- ※ 一直致力并专注于微波射频和天线设计工程师的培养, 更了解该行业对人才的要求
- ※ 经验丰富的一线资深工程师讲授, 结合实际工程案例, 直观、实用、易学

联系我们:

- ※ 易迪拓培训官网: <http://www.edatop.com>
- ※ 微波 EDA 网: <http://www.mweda.com>
- ※ 官方淘宝店: <http://shop36920890.taobao.com>