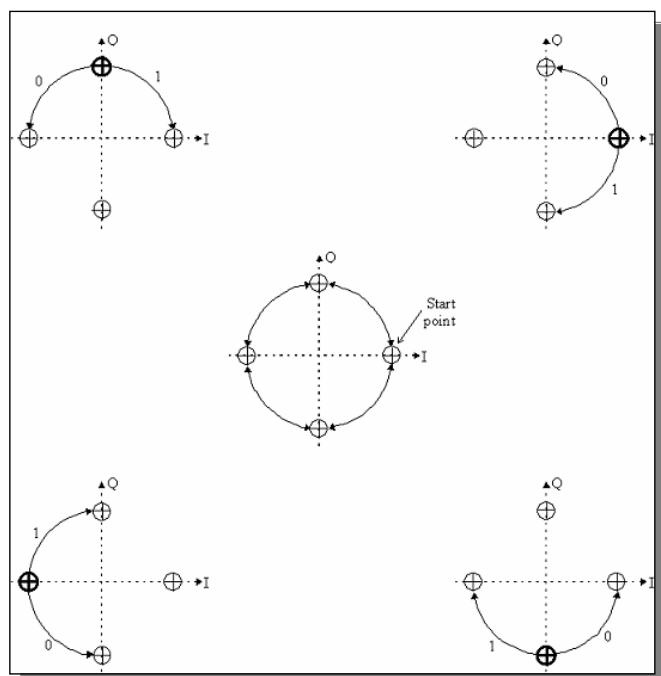
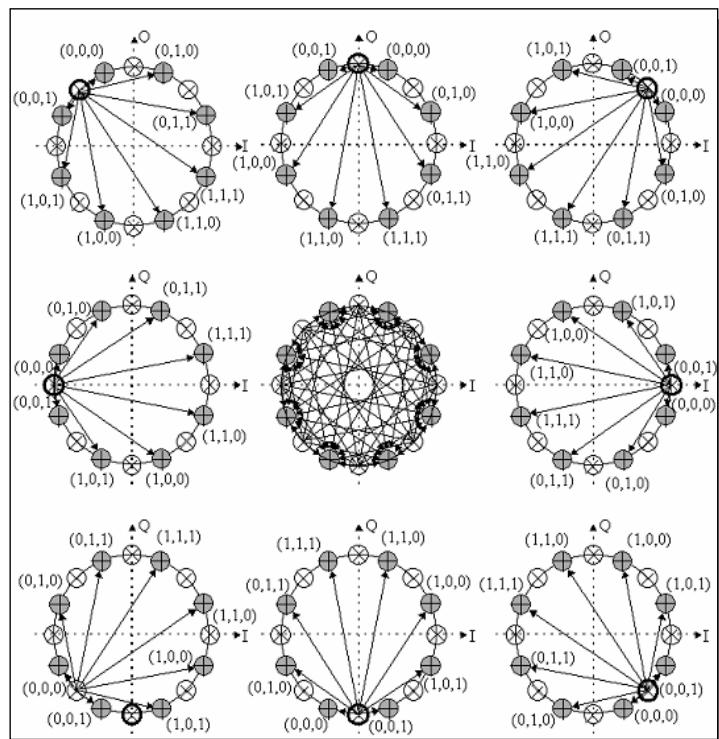


Agilent 8960 Series EDGE Handset Test – E1968A


Web Site:
<http://www.agilent.com/find/8960>

Page 1


GMSK Modulation Constellations

1. EDGE coding schemes
MCS1-4 (this is not the same as GPRS CS1-4)
2. Uses GMSK modulation
3. 1 bit per symbol
4. Constant power trace

3π/8 8PSK Modulation Constellations

1. EDGE coding schemes
MCS5-9
2. Uses 3π/8 8PSK
3. 3 bits per symbol
4. Utilises a 3π/8 rotation every symbol to avoid zero transitions
5. Power trace now varies with symbol transitions

Page 3

EGPRS Design Considerations

- All of the considerations which previously applied to GPRS also apply to EGPRS.
 - Multi-slot down-link and up-link, **faster LO and PLL** settling than GSM
 - MIPS – Even faster data rates, **Power consumption** and **Thermal issues**
- There are also new or more complex considerations for 8PSK and EGPRS
 - **Modulation Quality** – EVM/Phase error/Frequency error
 - Amplifier **linearity, efficiency**
 - **Filter** changes between GMSK and 8PSK, but (almost same) ORFS emission mask
 - **DSP** decode algorithm and prediction – has to be more robust, more MIPS (approx. factor of 4), more memory, more data retention (Incremental Redundancy)
 - New user **capabilities** - graphics acceleration and display – more MIPS
 - Receiver must now **demodulate both GMSK and 8PSK**, perhaps in contiguous bursts – 8PSK S/N - BER/BLER demodulation challenges

EGPRS RF TEST Considerations

There are also new test considerations for EDGE

- New **8PSK modulation** format requires validation
- **Modulation Quality** – EVM/Phase error/Frequency error
- **8PSK Power measurement** changes
- **Power Vs Time** – New mask definition
- **ORFS** – More challenging to meet the same specification
- Testing under multiple TX timeslots

Page 5

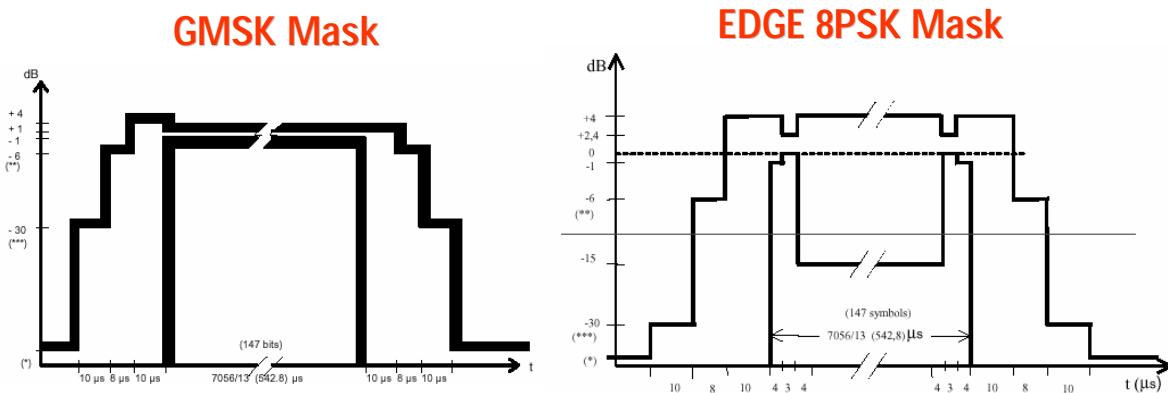
EGPRS RF TEST Considerations

There are also new test considerations for EDGE

- Receiver must now demodulate 8PSK - BER/**BLER**
- New Test Connection type – **SRB**
- Possible **asymmetric coding schemes**
- Some devices will be 8PSK Downlink ,and GMSK uplink
 - how does loop-back BER/BLER operate?
- MIPS, application, memory, network latency, delays, IR protocol complexity
- Testing under multiple timeslots

Page 6

Measurement Comparison


	GSM	EDGE
Output Power over useful part of burst	Not data dependent	Use Random Data
Spectrum due to Modulation	Yes	Different Mask *
Spectrum due to Switching	Yes	Same as MSK
Spurious	Yes	Same as MSK
Power Vs. Time	Yes	Different Mask
Modulation Accuracy	Phase Error: Peak and RMS	EVM: Peak, RMS, 95 th % Origin Offset

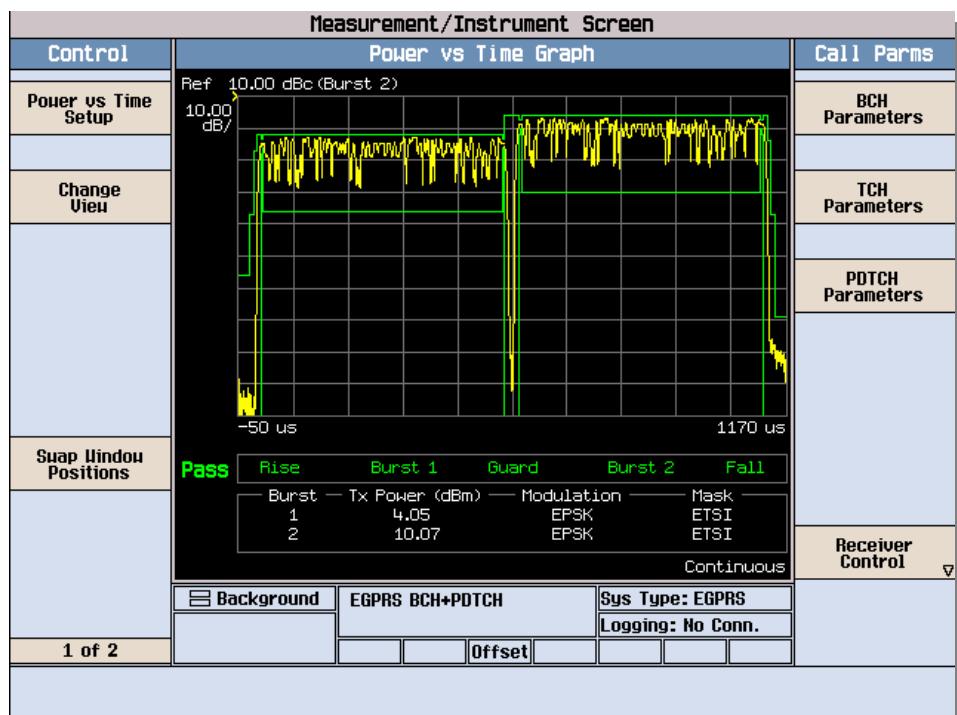
*There is a 4dB change to the 400KHz offset for the ORFS modulation

Page 7

Power vs. Time Masks for GSM and EDGE

The amplitude modulation in EDGE requires that a different power versus time mask be used.

Page 8


EDGE Power Vs. Time

Agilent Technologies

Page 9

8960 EDGE Measurements- Power v.s. Time

Agilent Technologies

Page 10

8-PSK Power Measurement

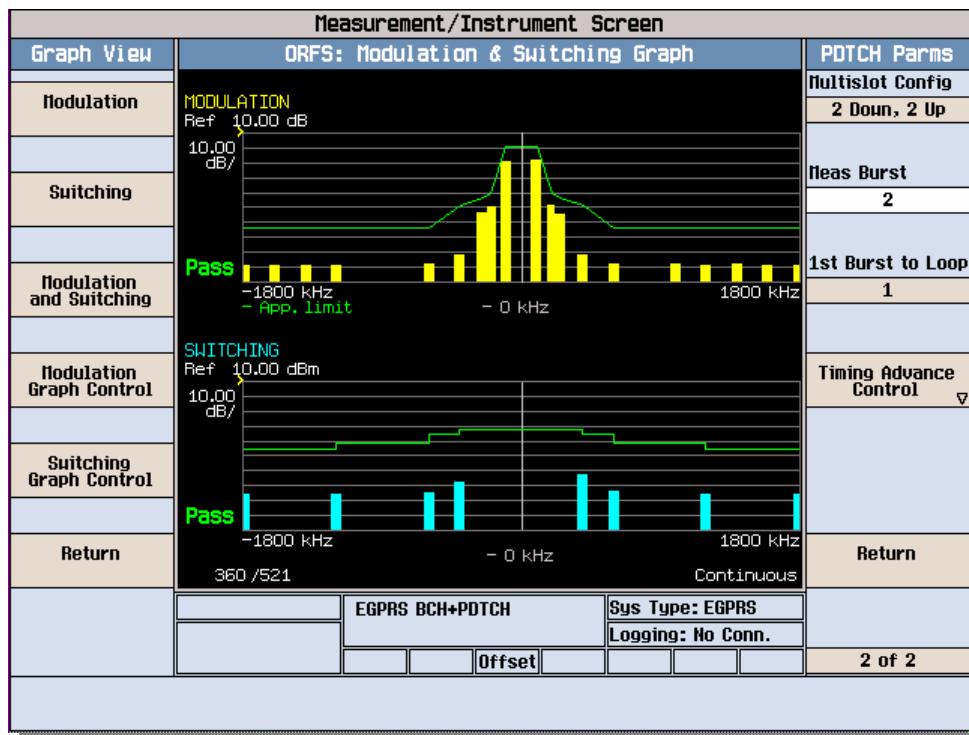
KEY STRENGTH

- 8 PSK instantaneous power depends on the data that is being used to modulate the carrier.
- There is power fluctuations due to the modulation
- Accurate average power measurement requires measuring and averaging at least 16 bursts (standards say 200)
 - By using the data used to modulate the carrier we can estimate the average power from just a single burst
- Big advantage in production due to vastly reduced test times (patent applied for)

Agilent Technologies

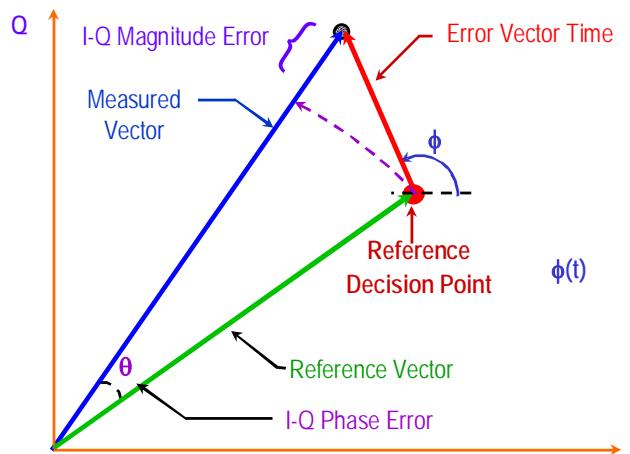
Page 11

8960 EDGE Measurements- Transmit Power

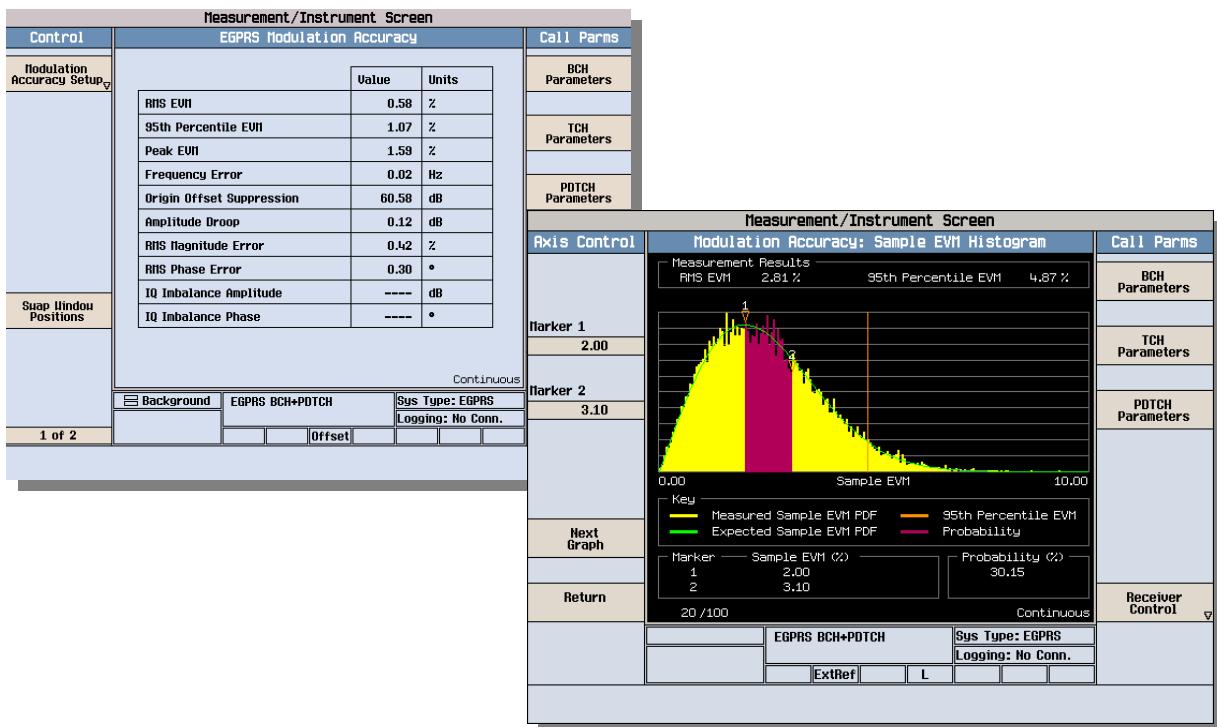

Measurement/Instrument Screen					
Control	EGPRS Transmit Power				Call Params
EGPRS Transmit Power Setup	EPSK Burst Power	EPSK Est Carrier Power			BCH Parameters
	Minimum 3.67 dBm	Maximum 4.34 dBm	Minimum 3.94 dBm	Maximum 4.16 dBm	TCH Parameters
	Average 4.03 dBm	Std Dev 0.15 dBm	Average 4.06 dBm	Std Dev 0.04 dBm	PDTCH Parameters
	100 / 100			Continuous	
	EGPRS Transmit Power Setup			Value	Receiver Control
	Multi-Measurement Count			100	
	Trigger Arm			Continuous	
	Trigger Source			Auto	
	Trigger Delay			0.000 s	
	Measurement Timeout			Off	
Span Window Positions	Estimated Carrier Power State			On	
Close Menu					
	Background	EGPRS BCH+PDTCH		Sys Type: EGPRS	
		Offset		Logging: No Conn.	
1 of 2					

Agilent Technologies

Page 12


8960 EDGE Measurements- Output RF Spectrum

Page 13


EDGE - Error Vector Magnitude

- RMS EVM \leq 9%
- Peak EVM \leq 30%
- Origin offset suppression >30 dB
- 95:th-percentile EVM \leq 15%
- Per burst is measured under the duration of at least 200 bursts.

Page 14

8960 EDGE Measurements- Modulation Accuracy

Page 15

What does not include in EVM measurement for modulation accuracy?

- Frequency Error : 0.1ppm<11.10>
- IQ Imbalance:
 - Phase Imbalance
 - Amplitude Imbalance
- Amplitude Droop

Page 16

Measurements – BER/BLER

Bit Error Rate (BER)

- Instrument sends data to device, device loops back data, sent/received data is compared in instrument and BER calculated

BLER - 2 methods

- BLER Measurement Reports - device is polled and reported ACK/NACK's displayed
- BLER Measurement - BLER is derived from the BER results

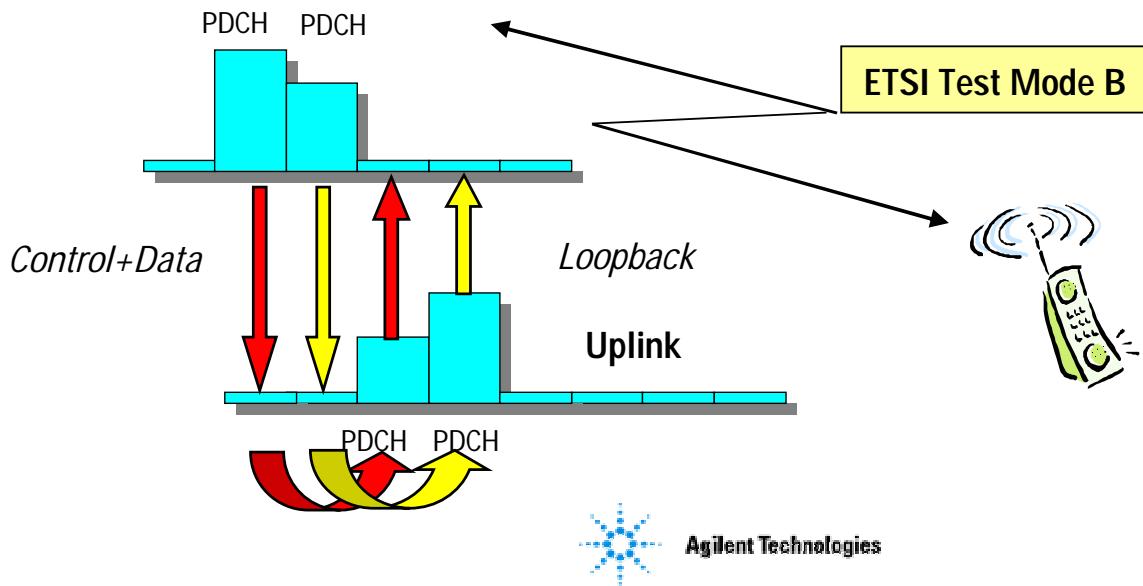
Remember that 8PSK reception Signal/Noise must be 9dB higher than for GMSK
It is necessary to check receiver sensitivity for both formats

Page 17


Data Connection Type – ETSI Test Mode A

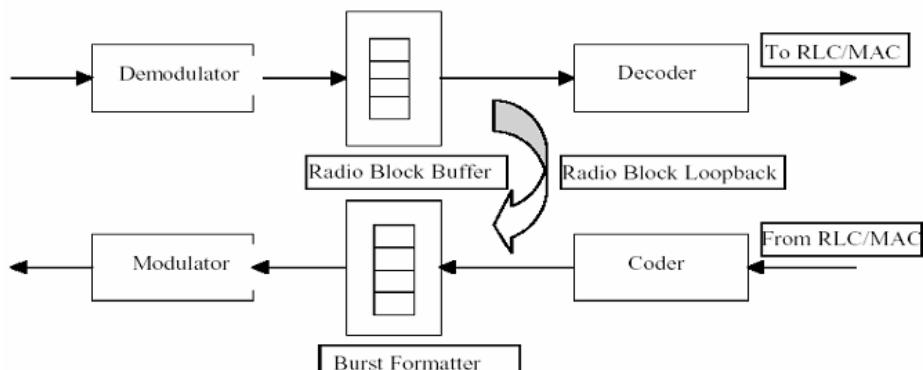
- After mobile has camped to the EGPRS test set, the EGPRS attach process is established. 8960 sends protocol **control message** forcing mobile to transmit.

ETSI Test Mode A


- Mobile transmits on the required number of **timeslots**, **modulation** and at the required power level.

Data Connection Type – ETSI Test Mode B

Note: The multislot configuration shown here is symmetrical. There can be unequal numbers of downlinks and uplinks.



Page 19

EDGE Receiver Measurements

- The EGPRS Switched Radio Block Loopback mode must be supported by an EGPRS MS.
- It is a Physical RF layer loopback performed before channel decoding designed to support BER testing.


3GPP TS 04.14 V8.4.0 (2002-07), Release 1999, Section 5.5

Agilent Technologies

Page 20

Data Connection Type - SRB

- EGPRS has no “clear-coded” coding Schemes – Even MSC4, 9 have error correction
- **Switched Radio Block Loop-back mode (SRB)** - Loops back data **before decoding** – downlink data is sent back on the uplink
- Unlike ETSI test Mode B – no MS **interpretation or correction** of the raw data
- The preferred EGPRS RF test data connection type
- SRB must **be supported by the MS**

Page 21

Agilent's BLER Mode

- BLER connection type was very helpful for GPRS mobiles which did not support ETSI A or B test modes. It can still be used for EGPRS, **BUT the ACK/NACK's are always transmitted in GMSK**.
- BLER can therefore be used for 8PSK demod, BLER tests and GMSK transmitter measurements, but **NOT 8PSK Tx Measurements**.

Page 22

The E6704A/E6701C EGPRS LA Solution

Allow/Prevent Downlink MCS switching

Retransmission MCS Switching	Value
Allow MCS Switching	On
Retransmissions before MCS switch	10

Downlink data corruption options (see next page)

NACK Good Blks forces the MS to re-transmit even when the block received by the BS was OK. – Simulates poor Up-link conditions

The new window size will be an important factor in EGPRS – much more data can be sent without Acknowledgment

RLC/MAC Ctrl

Retransmission MCS Switching

IMSI: Called Num: Burst 1: Unused

Burst 1: Unused

Page: RACH: PRACH: Missing Corrupt Decode

Burst T: BLER (B): USF BLER: ----- %

Window Size

Minimum

Active Cell Idle

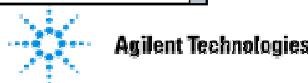
Maximum

Logging: no conn.

Return

2 of 2

1 of 2



Page 23

The EGPRS LA Solution – DL Corruption

Call Setup Screen

Control		Call Setup		PDTCH Parms	
		<p>DUT Information</p> <p>IMSI: Called Num: Multislot Class (GPRS): ----- Multislot Class (EGPRS): -----</p> <p>Traffic Channel Downlink Power</p> <p>Burst 1, 2, 3, 4: -----, -----, -----, ----- dBm</p> <p>Unused Bursts: ----- dBm</p> <p>Counters</p> <p>Page: 0 DUT IP Tx.</p>		<p>PDTCH Parms</p> <p>Downlink Traffic Power</p> <p>Traffic Band PGSII</p> <p>Traffic Channel 30</p> <p>RS TX Level</p> <p>Modulation Coding Scheme</p> <p>Return</p>	
		<p>Downlink Corruption</p> <p>Downlink Corruption: On</p> <p>Sequence Length: 100</p> <p>Blocks in Sequence to Corrupt: 25</p> <p>Corruption applied to Burst 1: On</p> <p>Corruption applied to Burst 2: Off</p> <p>Corruption applied to Burst 3: On</p> <p>Corruption applied to Burst 4: Off</p> <p>First Corrupted Symbol: 3</p> <p>Number of Symbols to Corrupt: 60</p> <p>Corruption Pattern: All Ones</p>			
Close Menu				<p>Corruption Pattern</p> <p>All Zeros</p> <p>All Ones</p> <p>Invert</p>	
				<p>IntRef</p>	

Page 24

Link Adaptation Test in EGPRS LA

- Networks will switch Modulation Coding Schemes automatically, based on the number of requests for retransmissions and quality reports from the mobile such as the *bit error probability*, is known as *link adaptation*.
- When Incremental Redundancy is switched on - EGPRS LA will provide automatic changes to the Modulation Coding Scheme after a fixed user settable number of re-transmissions (and automatic puncturing scheme cycling)
 - EGPRS LA will not switch MSC based on BEP or re-transmissions

Retransmission MCS Switching	Value
Allow MCS Switching	On
Retransmissions before MCS switch	10

Page 25

EDGE Manufacturing Considerations -GSM/GPRS/EGPRS Test Strategy

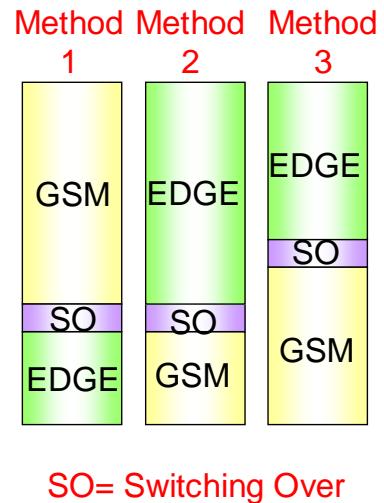
- **Testing GSM only, do not test GPRS/EGPRS**
 - ✓ There are many changes in physical layers in GPRS.
(e.g. PLL/LO timing, 2 uplink PvT testing, Block Error Rate.....)
- **Testing GSM & GPRS & EGPRS in 2 separate testers**
 - ✓ Waste of handling time, power on/off & camping time,.....
 - ✓ GSM & EGPRS testings are very similar.
- **Combination GSM & EGPRS testing together, *NO GPRS testing required***
 - ✓ Saving the overall testing time
 - ✓ Testing the switching between GSM (Voice) & EGPRS (data)
 - ✓ **EGPRS will cover GPRS testing.**

EDGE Manufacturing Considerations

-GSM/EGPRS Test Strategy

■ Combination GSM & EGPRS testing together

- ✓ Target Test time = 1.5X (comparing with existing GSM test plan)


■ Different Testing Strategies

- ✓ GSM (Major test) + EGPRS (Minor)
- ✓ EGPRS (Major test) + GSM (minor)
- ✓ GSM (50%) + EGPRS (50%)

■ Different Testing conditions

New EGPRS testing items

- ✓ Slot Configurations: 1x1, 2x1, 3x1, 4x1, 2x2, 3x2
- ✓ Modulation Coding Scheme: MCS1-4 (GMSK)
- ✓ MCS5-9 (8PSK)
- ✓ Uplink & Downlink MCS BLER testing.

Page 27

EDGE Manufacturing Considerations

-GSM/GPRS Test Strategy

■ Typical GSM Test plan

Under dual-band or tri-band mode

- ✓ Lower Channel: TX + RX tests
- ✓ Middle Channel: Major TX tests
- ✓ Upper Channel: TX + RX tests

■ When designing a Combined GSM/EDGE testing:

- ✓ EGPRS can cover most of TX tests in GSM
- ✓ GSM is under 1x1.
- ✓ New MCS testing requirement
- ✓ New Modulation Accuracy testing requirement

Page 28