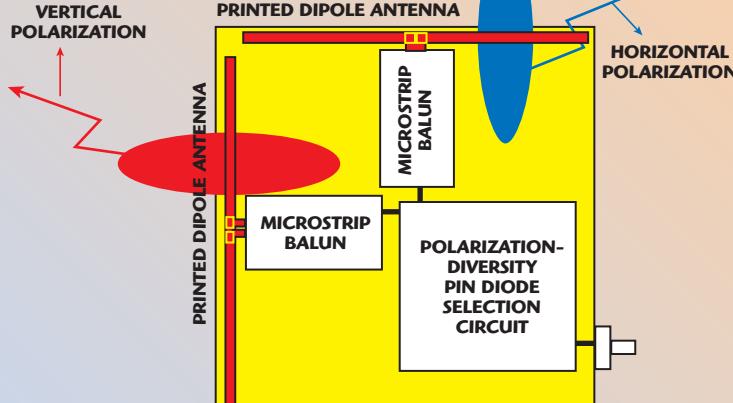


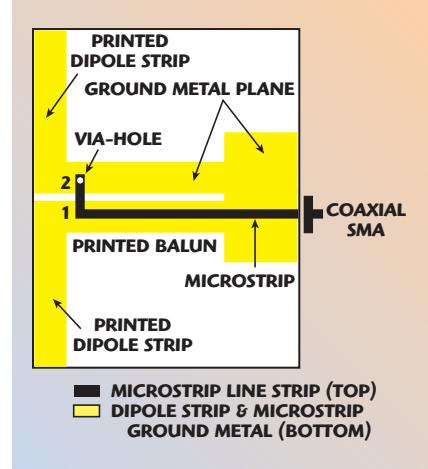
A 2.4 GHz POLARIZATION-DIVERSITY PLANAR PRINTED DIPOLE ANTENNA FOR WLAN AND WIRELESS COMMUNICATION APPLICATIONS

This article presents the design simulation, fabrication and measured performance of a 2.4 GHz polarization-diversity printed dipole antenna for wireless communication applications. Two orthogonal printed dipole antennas, each with a microstrip via-hole balun for vertical and horizontal polarization, are combined and fabricated on a PCB substrate. PIN diodes are used as switches to select the desired antenna polarization. The 3D finite-element-method (FEM) electromagnetic EM simulator, HFSS, is used in the design simulation of this planar antenna structure. Numerical and measured results of the antenna radiation characteristics, including input SWR, radiation pattern coverage and polarization-diversity, are presented and compared.

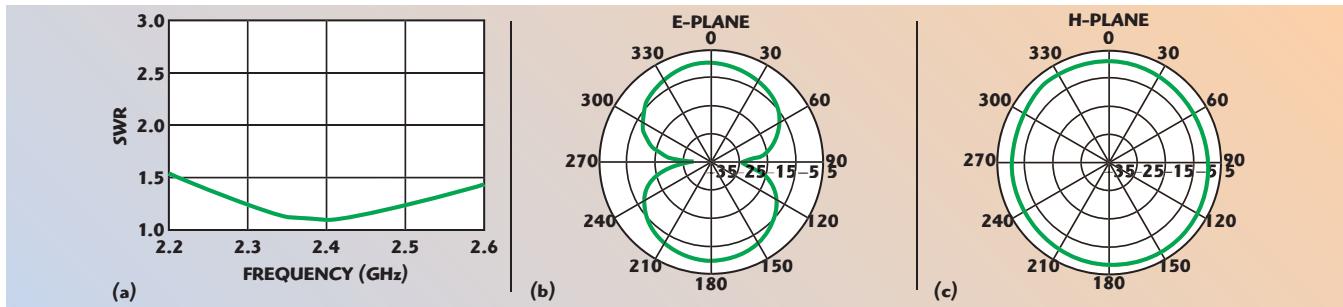
In wireless communication systems, such as wireless local area networks (WLAN), research and development efforts are aiming at smaller size and better performance. In addition to the use of signal processing techniques to improve communication channel capacity, the radiation characteristics of the portable antenna system is also very important for communication performance.


In urban or indoor environments, the radio wave will propagate through complicated reflection or scattering processes. The polarization of the radio wave may change significant-

ly. In order to effectively receive the communications signal, a polarization-diversity antenna for wireless communications may become an important requirement. A polarization-diversity antenna may have a pair of linearly-polarized antennas, and the radio signal received on both antenna is sampled and compared at



HUEY-RU CHUANG, LIANG-CHEN KUO,
CHI-CHANG LIN AND WEN-TZU CHEN
*National Cheng Kung University,
Tainan, Taiwan*


TECHNICAL FEATURE

▲ Fig. 1 A 2.4 GHz polarization-diversity antenna.

▲ Fig. 2 Printed dipole antenna with a microstrip balun.

▲ Fig. 3 Simulated performance of a 2.4 GHz printed dipole antenna placed horizontally; (a) input SWR, (b) E-plane pattern and (c) H-plane pattern.

certain time intervals. Then the antenna with the best signal quality is selected.

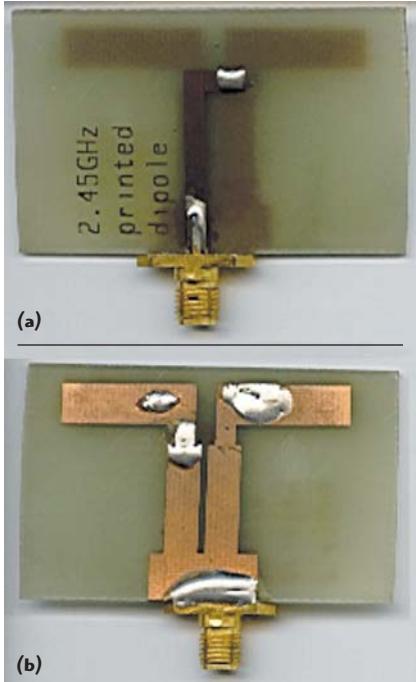
A typical dipole antenna radiates a vertically polarized EM wave and has an omnidirectional antenna pattern. In order to have a preferred planar antenna structure for this 2.4 GHz polarization-diversity antenna, a printed dipole antenna with a microstrip via-hole balun is designed. As shown in **Figure 1**, two orthogonal printed dipole antennas, for vertical and horizontal polarization, respectively, are combined and fabricated on a PCB substrate. PIN diodes are used to switch and select the desired antenna polarization.

In the antenna design, the high frequency structure simulator (HFSS), based on a 3D FEM, was employed for design simulation of the complete printed dipole structure. A printed dipole antenna and a polarization-diversity planar dipole antenna board (with a polarization-selection PIN diode circuit) have been fabricated on FR-4 PCB substrates. A complete 3D structure FEM simulation and the measured performance

of the realized printed dipole-antenna are compared. The measured radiation characteristics of the polarization-diversity planar dipole antenna, including input SWR, radiation pattern coverage and polarization diversity, are presented.

PRINTED DIPOLE ANTENNA WITH MICROSTRIP BALUN

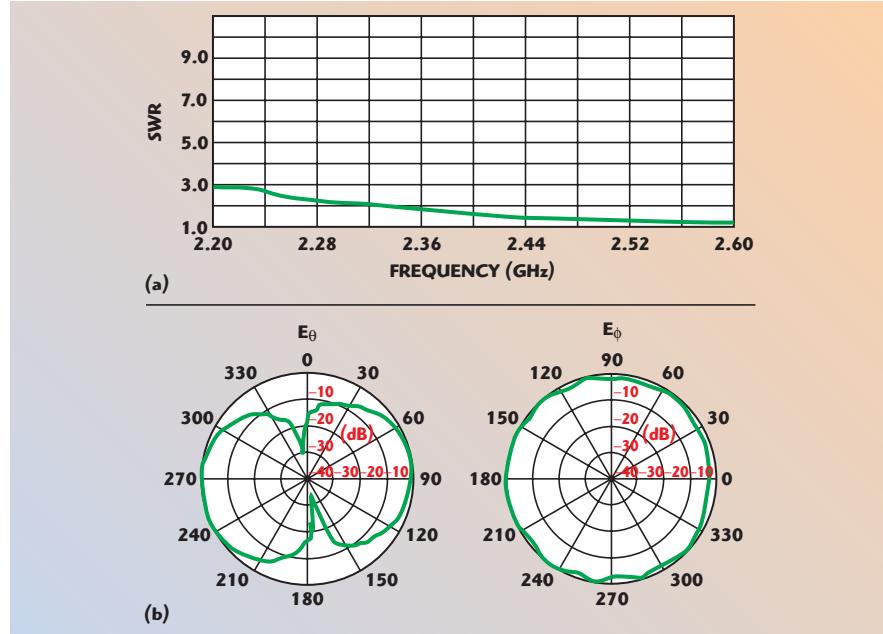
As shown in **Figure 2**, a printed dipole antenna has a printed microstrip balun which acts as an unbalanced-to-balanced transformer from the feed coaxial line to the two printed dipole strips. The length of the dipole strip and the balun microstrip are both about 1/4 wavelength. The ground plane of the microstrip line and the dipole antenna strips are in the same plane. A via-hole permits the feed point 2 of a printed dipole strip to have the same phase as the feed point 1 of the other printed dipole strip. Due to the 180° phase difference between the top strip and the ground plane of the microstrip line, the feed point 2 of the printed dipole strip will have 180° phase difference with the other feed point 1. Accurate

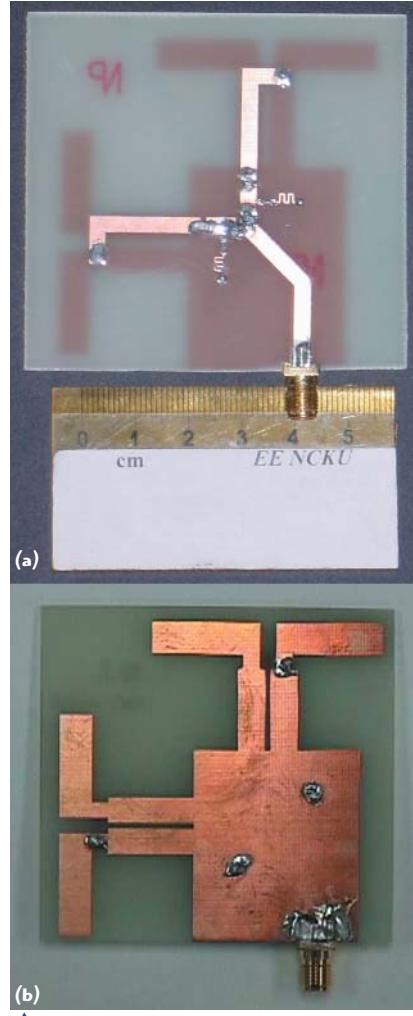

dimensions of the printed dipole strip and the microstrip balun structure are determined by numerical simulation, using HFSS.

The simulation results for a 2.4 GHz printed dipole antenna placed horizontally with a microstrip via-hole balun and fabricated on an FR-4 substrate are shown in **Figure 3**. The input SWR is less than 1.5 from 2.2 to 2.6 GHz. The simulated E- and H-plane antenna patterns are very close to those of an ideal dipole antenna, where the H-plane pattern is omnidirectional. **Figure 4** is a photograph of a realized antenna. The measured input SWR and antenna patterns (measured with the dipole placed vertically) agree well with the simulation results, as shown in **Figure 5**.

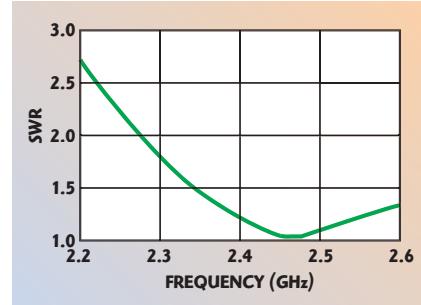
PLANAR POLARIZATION-DIVERSITY PRINTED DIPOLE ANTENNA

Figure 6 shows photographs of a realized 2.4 GHz planar polarization-diversity antenna consisting of two orthogonal printed dipole antennas with a polarization-switched PIN diode circuit. Each printed dipole has

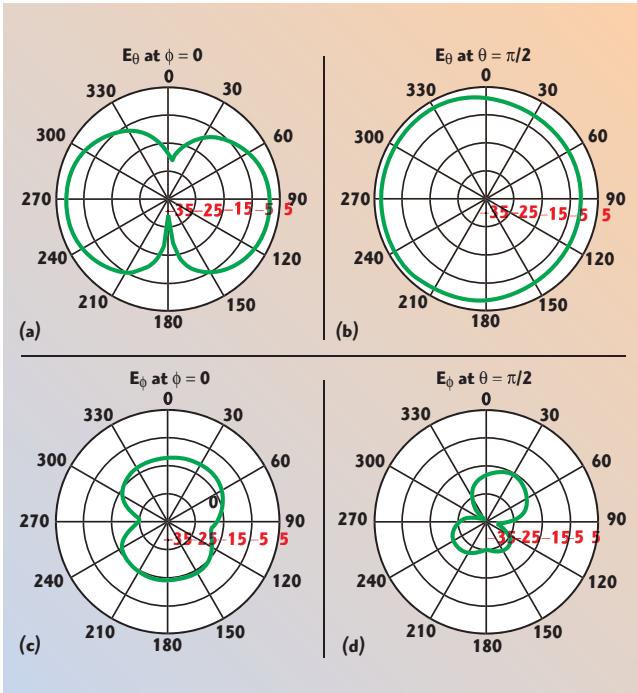

TECHNICAL FEATURE


▲ Fig. 4 A 2.4 GHz printed dipole antenna with a microstrip via-hole balun; (a) top view and (b) bottom view.

a microstrip via-hole balun. The terminals of the two baluns are connected to a PIN diode selection circuit. Voltages from the transceiver circuit ($\pm 5.0\text{V}$) are fed through a cable to the input of the PIN diode circuit section, to short or open-circuit the PIN diodes. Hence, either the vertical or horizontal printed dipole can be selected and connected to the transceiver.


Since the two dipoles are very close to each other and near the PIN diode circuit section, EM coupling will degrade the performance of each dipole. **Figure 7** shows the input SWR simulation results with the vertical dipole antenna selected (+5V to PIN diode switching circuit). The input SWR is less than 2 from 2.25 to 2.60 GHz. The simulated E- and H-plane antenna patterns are all very close to those of an ideal dipole antenna, of which the H-plane pattern is still omnidirectional, as shown in **Figure 8**. Note that the dominant polarization is the vertical (E_θ) field, which agrees with the selection of the vertical dipole. The antenna pattern has some attenuation in the direction of the PIN diode circuit board. It can also be seen that a certain level of the input RF signal is induced to the horizontal antenna path by EM coupling, which generates some level of cross-

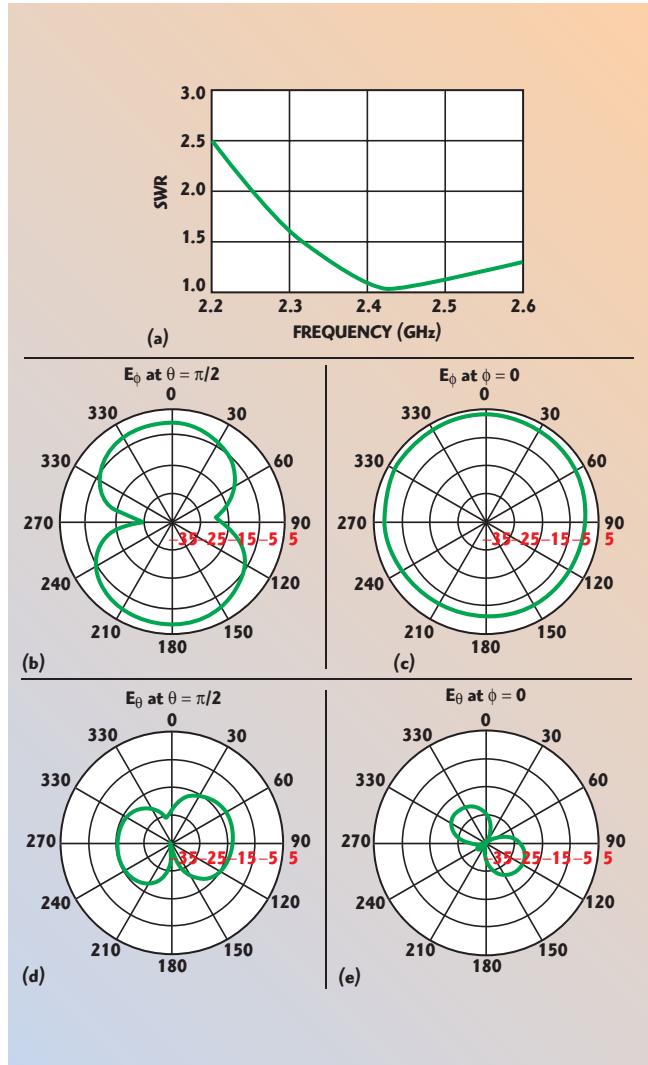
▲ Fig. 5 Measured input SWR (a) and radiation patterns (b).


▲ Fig. 6 A 2.4 GHz planar polarization-diversity antenna with a polarization-switched PIN diode circuit; (a) top view and (b) bottom view.

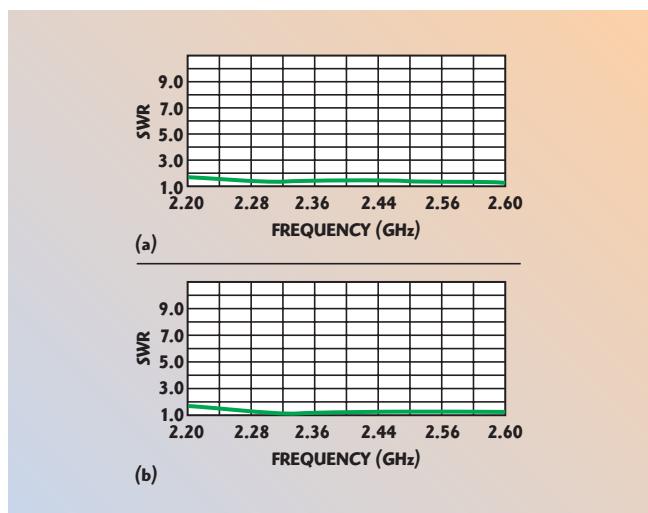
▲ Fig. 7 Input SWR simulation of a 2.5 GHz polarization-diversity dipole antenna with the vertical dipole selected.

polarization field. **Figure 9** shows the simulation results with the horizontal dipole antenna selected (-5V to PIN diode switching circuit). Results similar to the ones obtained for the vertical dipole antenna can be observed, except that the dominant polarization is the horizontal (E_ϕ) field, which agrees with the selection of the horizontal dipole.

The measured antenna input SWR with vertical or horizontal dipole selection confirms the input SWR of each dipole antenna (through the PIN diode selection circuit) is less than 1.5 from 2.2 to 2.6 GHz, which agrees with the HFSS simulation results. The measured antenna patterns with the selection of the vertical or horizontal dipole shows that for the selection of the vertical dipole, the H-plane pattern is still quite omnidirectional (as an ideal vertical dipole) with some attenuation in the direc-

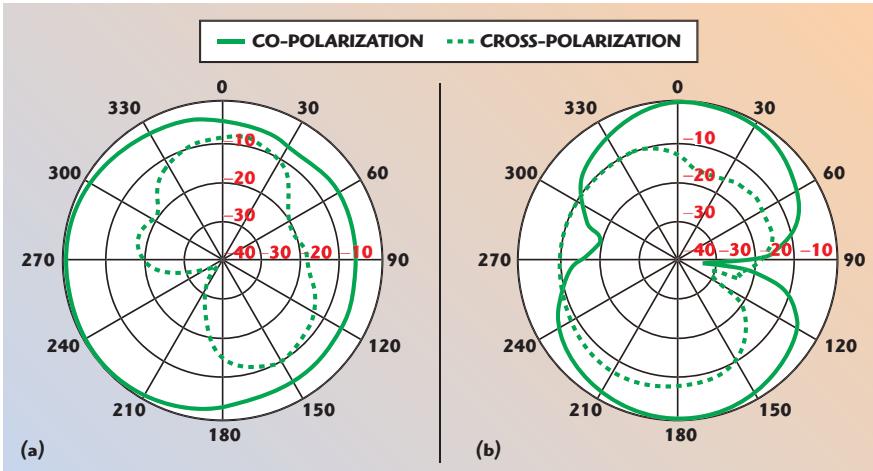


▲ Fig. 8 Simulation of a 2.5 GHz polarization-diversity dipole antenna with the vertical dipole selected; (a) E_θ -field E-plane pattern, (b) E_θ -field H-plane pattern, (c) E_ϕ -field (cross-polarization) E-plane pattern and (d) E_ϕ -field (cross-polarization) H-plane pattern.


tion of the PIN diode circuit board. **Figures 10 and 11** show the measured SWR and antenna patterns, respectively. A certain level of the induced cross-polarization pattern is observed as predicted by the HFSS simulation due to the proximity of the horizontal dipole strip and the PIN diode circuit board. As for the selection of the horizontal dipole, the E-plane pattern is also close to that of an ideal horizontal dipole. Also, the induced cross-polarization pattern is observed, which is the same situation as the selection of the vertical dipole. The measured data shows a good agreement with the HFSS simulation results and how the antenna polarization-diversity is working.

CONCLUSION

3D FEM design simulation, realization and measurements of a 2.4 GHz printed dipole antenna (with a microstrip via-hole balun) and a planar polarization-diversity printed dipole antenna are presented. The planar polarization-diversity antenna consists of two orthogonal printed dipole antennas for vertical and horizontal polarization and is fabricated on a FR-4 PCB board. A PIN diode switching circuit is used to select the desired antenna polarization. Satisfactory agreement between simulation and measurements is observed. The measured input SWR of the realized printed dipole antenna is less than 1.5 from 2.2 to 2.6 GHz. The measured input SWR of the vertical and horizontal dipole (through the PIN diode switching circuit) of the realized planar polarization-diversity antenna is less than 1.5 from 2.3 to 2.6 GHz. The measured E- and H-plane patterns of the polarization-diversity antenna show that the selected vertical or horizontal dipole have a performance close to a single dipole antenna in a vertical or horizontal position. The designed planar polarization-diversity antenna can be used for wireless communication and WLAN applications.



▲ Fig. 9 Simulation of a 2.4 GHz polarization-diversity printed dipole antenna (with the horizontal dipole selected); (a) input SWR, (b) E_ϕ -field E-plane pattern, (c) E_ϕ -field H-plane pattern, (d) E_θ -field (cross-polarization) E-plane pattern and (e) E_θ -field (cross-polarization) H-plane pattern.

▲ Fig. 10 Measured input SWR of a 2.4 GHz polarization-diversity printed dipole antenna; (a) vertical dipole selection and (b) horizontal dipole section.

TECHNICAL FEATURE

▲ Fig. 11 Measured co-and cross-polarized patterns of a 2.4 GHz polarization-diversity printed dipole antenna; (a) vertical dipole selected and (b) horizontal dipole selected.

ACKNOWLEDGMENT

The authors would like to thank Ansoft Inc. for its support of the HFSS software. ■

References

1. K. Fujimoto and J. R. James, *Mobile Antenna Systems Handbook*, Artech House Inc., Norwood, MA 1994.
2. B. Edward and D. Rees, "A Broadband Printed Dipole with Integrated Balun," *Microwave Journal*, May 1987, pp. 339-344.
3. K. Hettak, G.Y. Delisle and M.G. Stubbs, "A Novel Variant of Dual Polarized CPW Fed Patch Antenna for Broadband Wireless Communications," *IEEE Antennas and Propagation Society International Symposium Digest*, Vol.1, 2000, pp. 286-289.
4. L. Zhu and K. Wu, "Model-based Characterization of CPS-fed Printed Dipole for Innovative Design of Uniplanar Integrated Antenna," *IEEE Microwave and Guided Wave Letters*, Vol. 9, No. 9, September 1999, pp. 342-344.
5. N. Michishitai and H. Arai, "A Polarization-diversity Antenna by Printed Dipole and Patch With a Hole," *IEEE Antennas and Propagation Society International Symposium Digest*, 2001, pp. 368-371.

Huey-Ru Chuang
received his BSEE and MSEE degrees from National Taiwan University, Taipei, Taiwan, in 1977 and 1980, respectively, and his PhD degree in electrical engineering from Michigan State University, East Lansing, MI, in 1987.

From 1987 to 1988, he was a post-doctoral research associate at the Engineering Research Center of Michigan State University. From 1988 to 1990, he was with the Portable Communication Division of Motorola Inc., Ft. Lauderdale, FL. He joined the department of electrical engineering of National Cheng Kung University, Tainan, Taiwan, in 1991, where he is currently a professor. His research interests include portable antenna design, RF/microwave circuits and RFIC/MMIC for wireless communications, electromagnetic computation of human interaction with mobile antennas, EMI/EMC, microwave communication and detection systems.

Liang-Chen Kuo
received his BSEE degree from Nan-Tai Institute of Technology, Tainan, Taiwan, and his MSEE degree from Tatung Institute of Technology, Taipei, Taiwan, in 1987 and 1996, respectively. He is currently working toward his PhD degree in electrical engineering from National Cheng Kung University, Tainan, Taiwan. His research interests include computational electromagnetics and antenna design.

Chi-Chang Lin
received his BSEE and MSEE degrees from Tatung Institute of Technology, Taipei, Taiwan, in 1999 and 2001, respectively. He is currently working toward his PhD degree in electrical engineering from National Cheng Kung University, Tainan, Taiwan. His research interests include EM simulation and microwave antenna design.

Wen-Tzu Chen
received his PhD degree from National Cheng Kung University, Tainan, Taiwan, in 1998. He is currently an assistant professor at the Institute of Computer and Communication, Shu-Te University, Yen Chau, Taiwan. His research interests include numerical computation of EM interaction between the antenna and the human body, and microwave antenna design.

射频和天线设计培训课程推荐

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立，致力并专注于微波、射频、天线设计研发人才的培养；我们于 2006 年整合合并微波 EDA 网(www.mweda.com)，现已发展成为国内最大的微波射频和天线设计人才培养基地，成功推出多套微波射频以及天线设计经典培训课程和 ADS、HFSS 等专业软件使用培训课程，广受客户好评；并先后与人民邮电出版社、电子工业出版社合作出版了多本专业图书，帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、研通高频、埃威航电、国人通信等多家国内知名公司，以及台湾工业技术研究院、永业科技、全一电子等多家台湾地区企业。

易迪拓培训推荐课程列表：<http://www.edatop.com/peixun/tuijian/>

射频工程师养成培训课程套装

该套装精选了射频专业基础培训课程、射频仿真设计培训课程和射频电路测量培训课程三个类别共 30 门视频培训课程和 3 本图书教材；旨在引领学员全面学习一个射频工程师需要熟悉、理解和掌握的专业知识和研发设计能力。通过套装的学习，能够让学员完全达到和胜任一个合格的射频工程师的要求…

课程网址：<http://www.edatop.com/peixun/rfe/110.html>

手机天线设计培训视频课程

该套课程全面讲授了当前手机天线相关设计技术，内容涵盖了早期的外置螺旋手机天线设计，最常用的几种手机内置天线类型——如 monopole 天线、PIFA 天线、Loop 天线和 FICA 天线的设计，以及当前高端智能手机中较常用的金属边框和全金属外壳手机天线的设计，通过该套课程的学习，可以帮助您快速、全面、系统地学习、了解和掌握各种类型的手机天线设计，以及天线及其匹配电路的设计和调试…

课程网址：<http://www.edatop.com/peixun/antenna/133.html>

WiFi 和蓝牙天线设计培训课程

该套课程是李明洋老师应邀给惠普 (HP) 公司工程师讲授的 3 天员工内训课程录像，课程内容是李明洋老师十多年工作经验积累和总结，主要讲解了 WiFi 天线设计、HFSS 天线设计软件的使用，匹配电路设计调试、矢量网络分析仪的使用操作、WiFi 射频电路和 PCB Layout 知识，以及 EMC 问题的分析解决思路等内容。对于正在从事射频设计和天线设计领域工作的您，绝对值得拥有和学习！…

课程网址：<http://www.edatop.com/peixun/antenna/134.html>

CST 学习培训课程套装

该培训套装由易迪拓培训联合微波 EDA 网共同推出, 是最全面、系统、专业的 CST 微波工作室培训课程套装, 所有课程都由经验丰富的专家授课, 视频教学, 可以帮助您从零开始, 全面系统地学习 CST 微波工作的各项功能及其在微波射频、天线设计等领域的设计应用。且购买该套装, 还可超值赠送 3 个月免费学习答疑…

课程网址: <http://www.edatop.com/peixun/cst/24.html>

HFSS 学习培训课程套装


该套课程套装包含了本站全部 HFSS 培训课程, 是迄今国内最全面、最专业的 HFSS 培训教程套装, 可以帮助您从零开始, 全面深入学习 HFSS 的各项功能和在多个方面的工程应用。购买套装, 更可超值赠送 3 个月免费学习答疑, 随时解答您学习过程中遇到的棘手问题, 让您的 HFSS 学习更加轻松顺畅…

课程网址: <http://www.edatop.com/peixun/hfss/11.html>

ADS 学习培训课程套装

该套装是迄今国内最全面、最权威的 ADS 培训教程, 共包含 10 门 ADS 学习培训课程。课程是由具有多年 ADS 使用经验的微波射频与通信系统设计领域资深专家讲解, 并多结合设计实例, 由浅入深、详细而又全面地讲解了 ADS 在微波射频电路设计、通信系统设计和电磁仿真设计方面的内容。能让您在最短的时间内学会使用 ADS, 迅速提升个人技术能力, 把 ADS 真正应用到实际研发工作中去, 成为 ADS 设计专家…

课程网址: <http://www.edatop.com/peixun/ads/13.html>

我们的课程优势:

- ※ 成立于 2004 年, 10 多年丰富的行业经验,
- ※ 一直致力并专注于微波射频和天线设计工程师的培养, 更了解该行业对人才的要求
- ※ 经验丰富的一线资深工程师讲授, 结合实际工程案例, 直观、实用、易学

联系我们:

- ※ 易迪拓培训官网: <http://www.edatop.com>
- ※ 微波 EDA 网: <http://www.mweda.com>
- ※ 官方淘宝店: <http://shop36920890.taobao.com>