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Appendix A

= Appendix A Fourier Transform
(-A.1 Fourier series

(- A.2 Fourier transform
A.2.1 Fourier Transform of Real, Even, and Odd Signals

(- A.3 Discrete-time Fourier Transform (DTFT and its
Inverse)

(- A.4 Discrete Fourier transform (DFT and its inverse)
A.4.1 Properties of the DFT

(- A.5 Fast Fourier transform (FFT) and its inverse
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A.1 Fourier Series 1/21

% [Fourier Series] Let the signal x(t) be a periodic signal with period T,.1f the
following conditions are satisfied

1. x(t) is absolutely integrable over its period
T
"1t it <0

2. The number of maxim and minima of x(t) in each period is finite
3. The number of discontinuous of x(t) in each period is finite
then x(t) can be expanded in terms of the complex exponential signal as

00 j272'£t . n
X (1) = X @ To 1 po+T —J2r—t
. (1) n; n where Xn:_j °x(t)e To dt
T, 7«
for some arbitrary o and
X () = X(t) If x(t) is continous at t
U () + x(t)) /2 if x(t) is discontinous at t ﬁ
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A.1 Fourier Series 2/21

X, are called the Fourier series coefficients of the signal x(t).
For all practice purpose, x, (t) = x(t)
= From now on, we will use x(t) instead of x_(t)

= The quantity f, =1/T, is called the fundamental frequency of the
signal x(t)

= The Fourier series expansion can be expressed in terms of angular
frequency @, = 24f, by

a+2rxl -
= D0 [T x(t)e it

X =
Y

and

X(t) = > x,e"
N=—o0
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A.1 Fourier Series 3/21

. |£
& Discrete spectrum - we may represent X, =| X, [€'”" where

| X, | gives the magnitude of the nth harmonic and <X, gives its
pha
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Figure 2.1 The discrete spectrum

of x(1).
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A.1 Fourier Series 4121

= Example: Let x(t) denote the periodic signal depicted in Figure 2.2

x(2) A

~To -3 3 fo " Figure2.2 Periodic signal x(1).
c t—nT
X(t) =Y H( 0)
N=—00 4
where (1 |tk1/2

M(t)=41/2 |t}=1/2
| 0 otherwise
IS a rectangular pulse. Determine the Fourier series

expansion for this signal ﬁ
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A.1 Fourier Series

5/21

Solution: We first observe that the period of the signal is T,and

1 ¢To/2 - jn—
X =— j x(the T dt
. 2xt
1 ez/2 —JN—
=—| 1le Todt
TO —7/2
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A.1 Fourier Series 6/21

Therefore, we have

0 T ] Jn?
X(t)= ), —sinc| —g "
7
[0}
lpql
flh

Figure 2.3 The discrete spectrum of the
rectangular pulse train.
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A.1 Fourier Series

7121

7=0.5 T =2

‘ = Superposition of

n=—M '0

M jnﬂ
X(t) =Y _I_isinc(%je T
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A.l1 Fourier Series for Real Signals

9/21

= If the signal x(t) is a real signal, we have

1 a+T,
X =— X(t)e
| TOL (t)

*

:Xn

1 a+T, T
=| — X(t)e °dt
TO .L ()

j272'1t

To dt

—_

—j272'1t
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A.l1 Fourier Series for Real Signals

10/21

= For a real, periodic x(t), the positive and negative coefficients are
conjugates.

& |X,| has even symmetry and £X, has odd symmetry with respect to the
n=0 axis.

|Xn| A

RE-———-e
—F———-e
—b—-——-
Rwhk-————-e
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whk-————e

——-w

Figure 2.5 Discrete spectrum of a
real-valued signal.
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A.l1 Fourier Series for Real Signals

11/21

. n
jorLt —j2r—t

®© 1 a+T,
X()=> xe X, = T—j x(t)e o dt
N=—00 0 .
a — jb a, + Jb,

= We may let X =" n and X_, = 5
2

; n . n . . n . . n
j2r—t —j2r—t a — b j2r—t a + b —j2r—t
Xne To + X_ne To — nZJne To _I_nzjne To

=a, CoS 27 1t +b, sin 27 1t
TO TO

; . d
= Since X, Is real and x, :20 , we conclude that

a & n . n
X(t) = =2 a cos| 27—t |+b_sin| 27—t

n=1 0 0

= This relation is called the trigonometric Fourier series expansion.
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A.l1 Fourier Series for Real Signals
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= Toobtain &, and D,  we have

— a+T, _j277£t
n=a” Jon _ 1] "x(t)e ™ dt
2 T,

1 a+T, n J a+Ty . n
= x(t)cos| 27—t [dt —— x(t)sin| 2z —t (dt
TOL X (ﬂT ] TOL X (ET ]

0 0

X

a

a, by
2 2
< From above equation, we obtain

a = 2 j () cos£27z ntjdt
T, *= T

0

2 a+T . n
b =— X(t)sin| 27z —t [dt
! TOL 2 (ET j

0
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A.1 Fourier Series for Real Signals  13/21

% There exists a third way to represent the Fourier series expansion of a real
signal. Noting that
j27z_|[]t —j27z_Pt 1l
X.e °+X,e ° =2X/CcoS 27z_|_t + /X,
0
we have
- n
X(t) =X, + Zancos(&th + Axn]
n=1

0

= For areal periodic signal, we have three alternative ways to represent

Fourier series expansion
. n
j2r—t

X(t) = i xe

N=—c0

:a"+z a,cos| 27—t |+b, sin| 27 -t
2 n=1 TO TO

:x0+2§:xncos Znnt+4xn ﬁ
n=1 To

| Cccu 1
Wireless Comm. Lab.
14



A.l1 Fourier Series for Real Signals

14/21

# The corresponding coefficients are obtained from

a+Ty —J'27TLt .
A R -y
T, Ja 272

a = EIMO X(t) COS(Zﬂ' nt)dt
T, * T

0

b, = % jT x(t)sin(Zﬂ_l:tjdt
x,| :%1/a§ b2

X = —arctan(bnj
a

n
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A.1 Fourier Series
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= Complex Exponential Fourier Series

G Given a signal x(t) defined over the interval (t,,t,+T,) with

the definition

WO:2.7Z'. f0:2_7z.

0

we define the complex exponential Fourier series as

X(t) = i X et <t<t +T,
where =

X =

1 ¢fto+To
n TO _[

x (t)e I"'dt

ty
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A.1 Fourier Series

16/21

EXAMPLE 2.6  Consider the signal
x(t) = cos wyt + sin’ 2wt (2.45)

‘where wy = 27/T,. Find the complex exponential Fourier series.

SOLUTION  We could compute the Fourier coefficients using (2.44), but
by using appropriate trigonometric identities and Euler’s theorem, we obtain

: 1
x(t) = cos wot + 3 — 3 cos 4wyt
9, 1 —jw 114 1 —jbe
= 3¢/ 4 Fe T 5 — T — 2T (2.46)

Invoking uniqueness and equating the second line term by term with

To2 _ oo X", we find that

1
Xo 2
X, =3=X_, (2.47)
"’/I' Xy = _% = X_4

=g - ! ,
with all other X_’s equal to zero. Thus considerable labor is saved by noting

that the Fourier series of a signal is unique.
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A.1 Fourier Series 17/21

= Trigonometric form of the Fourier series
G If x(t) is real and periodic signal

o0

x(t)= > X,e"™" |t <t<t, +T,

N=—-—o

= x(t) = Xo+i 2|X ,[cos(nwt+ 2X )
n=1

= x(t) = X, + > A cosnwyt+ > B, sinnw,t
n=1 n=1

where

A, =2|X, |cos(£X,)= Tij'tto”o x (t)cos (nw,t)dt
0 0

B, = —2|X,[sin (£X,) = Tij < (t)sin (nwot) ¢y
0 0

Cccu
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A.1 Fourier Series 20/21

= Parseval’s Theorem

1 o0
P = ﬁjTo\x(t)\zdt - X x (t)[
- xg+ 2 x()f
n=1

19 Wirele




A.l Fouriler Series 21/21
= Fourier series for several periodic signals
TABLE 2.1 Fourier Series for Several Periodic Signals
Signal: —37p = t = 3T, (One Period) Coefficients for Exponential Fourier Series
1. Asymmetrical pulse train:
x(f) = ATl (‘r — r”‘)__ r<T Xy = % sinc (nfyr)e™ /2™
\ 1]
x(f) = x(t + To), all ¢ n=0,+1, +2, ...
2. Half-rectified sinewave:
_ [Asin wpt, 0=<t=;T A 3
x(r}_{ | in—t=o oy =0 %2 %4
x =4 0 n= 13, 15
xX(t) = x(t + Ty), all t 7 1.
- zjxq, n =1
1A, n= —1
3. Full-rectified sinewave:
x(t) = Alsin wot]| 2A _
X, = 70 = n=20, +t2 =4, ...
0 n= %1, £3
4. Triangular wave:
4A 4A
?Gr-s-A, —ITHh=1t<0 x = 1722 n odd
X = 4A 1 kU. n even
A t+ A, 0 =t=3T
x(f) = x (t + To), all ¢
CCuU

Wireless Comm. Lab.
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A.2 Fourier transform 1/14

= Fourier transform is the extension of Fourier series to periodic and nonperiodic
signals.

= The signal are expressed in terms of complex exponentials of various frequencies,
but these frequencies are not discrete.

= The signal has a continuous spectrum as opposed to a discrete spectrum.
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A.2 Fourier transform 2/14

= Theorem 2.2.1 [Fourier Transform] If the signal x(t) satisfies certain conditions
known as Dirichlet conditions, namely,

1. x(t) is absolutely integrable on the real line, i.e.,

[ [x@dt <oo

2. The number of maxima and minima of x(t) in any finite interval on the real
line is finite,

3. The number of discontinuities of x(t) in any finite interval on the real line is
finite,

Then, the Fourier transform of x(t), defined by

X(f) =] x(tee*"dt

And the original signal can be obtained from its Fourier transform by

X.(t)= [ X(f)e*"df &

Cccu
Wireless Comm. Lab.
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A.2 Fourier transform 3/14

& Qbservations

G X(f) is in general a complex function. The function X(f) is
sometimes referred to as the spectrum of the signal x(t).

G To denote that X(f) is the Fourier transform of x(t), the
following notation is frequently employed

X(1)=F[x()]

to denote that x(t) is the inverse Fourier transform of X(f) , the
following notation is used

X(t) = F7[X(f)]

Sometimes the following notation is used as a shorthand for

both relations
X(t) < X(f) ﬁ

Cccu
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A.2 Fourier transform

4/14

€

The Fourier transform and the inverse Fourier transform relations can be

written as .00 °c0

X(t) =

o —00 o —00

(°00

X(r)e" ‘Z”ffdr}e””ﬂdf

X(t) =

On the other hand,

(" gi2A (gt }x(r)d .

o —00 o —00

j S(t—1)x(r)dr

where 5('[) Is the unit |mpulse From above equation, we may have

S(t-7)=[ e df

or, in general

5(t)

= [ e df

hence, the spectrum of 5('[) is equal to unity over all frequencies.

124
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A.2 Fourier transform 5/14

Example 2.2.1: Determine the Fourier transform of the signal T1(t).
Solution: We have

F[I1(t)] = Oﬁ(t)e‘””“dt

1
inamlmwt
2

_ [e j eJﬂf]

— 127zf

_ sin(zf)

oA

= sinc(f)

124

Cccu
25 Wireless Comm. Lab.




A.2 Fourier transform 6/14

*The Fourier transform of TI(t) .

-

1

1

1

1

1

]

1

1

]

]

]

1
= - -

—4 —2 2 4
m\//\ /\\/I/\I ,
=5 3 1] 1 3 5

\/ \/ 7 Figure2.6 TI() and its Fourier
transform. @
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A.2 Fourier transform 7/14

Example 2.2.2: Find the Fourier transform of the impulse
signal  x(t) =5 (t)
Solution: The Fourier transform can be obtained by

FI5(0)] = j S(t)e gt
_1

Similarly, from the relation

S(t)e!* dt =1

We conclude that F[1]=05(f) {“%

Cccu
Wireless Comm. Lab.
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A.2 Fourier transform

8/14

«The Fourier transform of (1) .

o(?) A

f spectrum.

. Figure 2.7 Impulse signal and its

124
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A.2 Fourier Transform of Real, Even, and Odd

Signals

9/14

= The Fourier transform can be written in general as
FIx(1)] = j X(t)e 1 dt

_ J X(t) cos(2t)dt — § J' X(0)sin(2t)dt

For real x(t),
j X(t) cos(2ft)dt is real

J X(t)sin(2At)dt is real

124
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A.2 Fourier Transform of Real, Even, and
Signals

Odd
10/14

*Since cosine is an even function and sine 1s an odd
function, we see that, for real x(t), the real part of X(f) Is
an even function of f and the imaginary part is an odd
function of f. Therefore, we have

X(=f)=X"(f)
*This is equivalent to the following relations:
Re[X (—1)]=Re[X ()]
Im[X (= f)]=—Im[X(f)
X (=) =[X(F)
LX(—F)=—2X(f)

124
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TABLE 2.1 TABLE OF FOURIER TRANSFORMS

Time Domain (x(¢)) Frequency Domain (X (f))
5(t) 1
1 5(f)
8(t _ t()) e—Jerfto
el 2 fot 8(f — fo)
cos(2m fot) 38(f = fo) + 38(f + fo)
sin(2r fot) —£8(f + fo) + £8(f = fo)
1, <3
neE) =< 3, t==;3 sinc(f)
0, otherwise
sinc(?) I1(f)
, t+1, -1<t<0
A)={ —t+1, 0<t<1 sinc?(f)
0, otherwise
sinc? () A(S)
e u_1®),a>0 m
te u_1(t),a >0 m
el _2_&__
aZ+(2nf)?
e—ﬂtz e—Jsz
1, t>0
sgn(®) =< -1, t<0 1/(rf)
0, t=0
u_1 (1) RLGEE
& (t) j2nf
8™ (1) G2rf)"
1 —jresgn(f)

t
n=+o0
S T8t —nTo)

T Yoneeod(f = %)

11/14

ol
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A.2 The Fourier Transform

12/14

= Properties
(- superposition theorem

ax (t)+ax(t) <> aX(f)+a,X,(f)

G Time-delay theorem
—1272' fto
x(t—t,) © X(f)e
( Scale-change theorem

«(at) © ix(%)

G Duality theorem ‘a ‘

X (t) < x(f)

32
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A.2 The Fourier Transform 13/14

G Frequency translation theorem
|2 7ot
x(t)e ™ « X(f-f,)

(G Modulation theorem

x(t) cos(27 fyt) o %x (f - fo)+%x (f+ 1)

G Differentiation theorem

dndxtn(t) o (i2rt) X ()

C Integration theorem

[ x(2)d2 o (j2zf)"X (f)+%x (0)5 ()

124

| Cccu 1
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A.2 The Fourier Transform 14/14

G Convolution theorem

(2, (t) =[x (20 (t-2)t =[x (t-2)x (2t X, (1), (1

o0

G Multiplication theorem

X (1) %,(t) < £)=[ X)X, (F=A)df =] X,(f-2)X,(2)cf

124
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= IDTFT

A.3 Discrete Time Fourier Transform 12
‘ = DTFT

o0

X (@)= ) x(n)e

N——o0

x(n):% " X (w)e""do

= Parseval relations




A.3 Discrete Time Fourier Transform o/

= If x(n) Is absolutely summable
= X(w) exist
= Low frequency : O
High frequency : +/r
= Discrete time sequence
Continuous spectrum with periodic 27

124
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A.4 Discrete Fourier Transform

1/1

= N-point DFT
Zﬂnk

X (k)= Z x(n)e " N

= N-point IDFT
N — Zﬂnk

K(n)=Y X (k)e' *

k=0

= Discrete sequence
Discrete spectrum
= Suitable for digital computer

124
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A.5 Fast Fourier Transform 1/5

% Saving the computing and complex of DFT

G The FFT drastically reduces the amount of calculations by exploiting
the regularity of the operations in the DFT.

= Butterfly FFT

X X, X
(- The radix-4 butterfly
In the radix-4 algorithm, the 5 L 5 )
transform is split into a number >§§< \
of trivial four-point transforms,
and non-trivial multiplications K > K "
only have to be performed between m
stage of these four-point transforms.  *: N X Xs X
= Suitable for digital computer ﬁ

| Cccu 1
Wireless Comm. Lab.
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A.5 Fast Fourier Transform 2/5

= An N-point DFT requwes N “complex multiplications or
phase rotations and N * complex additions.

= An N-point FFT using the radix-4 algorithm required
only ng (log, N —2) complex multiplications or phase
rotations and Nlog, N complex additions

124

| Cccu 1
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A.5 Fast Fourier Transform 3/5

= FFT butterflies for an N-point DFT

N-1
Xl(k) - ZXnWl\llm
n=0

N, Ny
2

2
_ 2nk (2n+1)k
- Z XZnWN + Z X2n+1WN
n=0 n=0

even sgquence odd se\(fquence
N, N,
< 2nk k < 2nk
_ n
- Z XZnWN +WN Z X2n+1WN
N, N,
< k k < nk
_ n
- Z XZnWE +WN Z X2n+1WE
n=0 2 n=0 2
_ k

_q2m
W, =e N
xll(k) = le(k)+W,\T,2X22(k),
XlZ(k) — Xzs(k)"'wl\z(/zxm(k)’
le(k) = Xo +W|\I|</4X4 ,
Xzz (k) =X, +W|\l|(/4X6 ,
X23(k) =X +Wr\|1(/4X5 ,
X24 k) = X3 +W,\||(,4X7

Cccu
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A.5 Fast Fourier Transform

4/5

= The illustration of FFT butterflies for an 8-point DFT

X0

Xa

X

X7

*2{0) ) 2 X,(0)
ﬁf X
|
B\,«:{(Z) () LX)
Xi(3)
Xi(4)
Xi(5)
X(6)
Xi(7)

X12(3)

Xoo(D)
~e——4 off 2-point DFTs ——<——2 off 4-point DFTs ———— ——1 off 8-point DFT —>
Stage [ (§=1) Stage 2(5=2) Stage3(S=3)

41
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A.5 Fast Fourier Transform

5/5

= The comparisons of complexity between DFT and FFT

DFT FFT Ratio Ratio
of DFT of DFT
Number of |Number of] Number of |Number of| multiplications | additions
complex complex complex complex to FFT to FFT
N multiplications | additions | multiplications | additions | multiplications | additions
2 4 2 1 2 4 1
4 16 12 4 8 4 1.5
8 64 56 12 24 5.3 23
16 256 240 32 64 8.0 3.75
32 1024 992 80 160 12.8 6.2
64 4096 4032 192 384 21.3 10.5
128 16384 16256 448 896 36.6 18.1
256 65536 65280 1024 2048 64.0 31.9
512 262 144 261632 2304 4 608 113.8 56.8
1024 1048576 1047552 5120 10240 204.8 102.3
2048 . 4194304 4192256 11264 22528 372.4 186.1
4096 16777216 16773120 24576 49152 682.7 - 341.3
8192 67 108 864 67 100672 53248 106 496 1260.3 630.0

124
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