

GENERAL DESCRIPTION

The IS31SE5000 is a low-power, reflectance-based infrared light sensor with advanced signal processing and digital output. The sensor can detect making touchless motion possible.

The IS31SE5000 uses one infrared LED and 2-channel receivers which pick up the reflectance signal from the 2 photodiodes to perform touchless motion detection. When horizontal motion or proximity motion happen, the flag bits in status register will be triggered and an interrupt signal is generated to inform the master to read the flag bit through I2C interface.

IS31SE5000 is available in UTQFN-12 (2mm × 2mm). It operates from 2.7V to 5.5V over the temperature range of -40°C to +85°C.

FEATURES

- Supply voltage from 2.7V~5.5V
- 400kHz I2C compatible interface
- 1µA shutdown current
- 0.6mA low supply current
- Detection range can be adjusted
- Motion Mode and Proximity Mode
- Integrated signal processing and digital output
- Auto interrupt clear
- Package in UTQFN-12 (2mm × 2mm)

APPLICATIONS

- Smart phones/GPS/MID/PAD/MP3
- Lighting/switch controller/household electrical appliances
- Toys/game machine

TYPICAL APPLICATION CIRCUIT

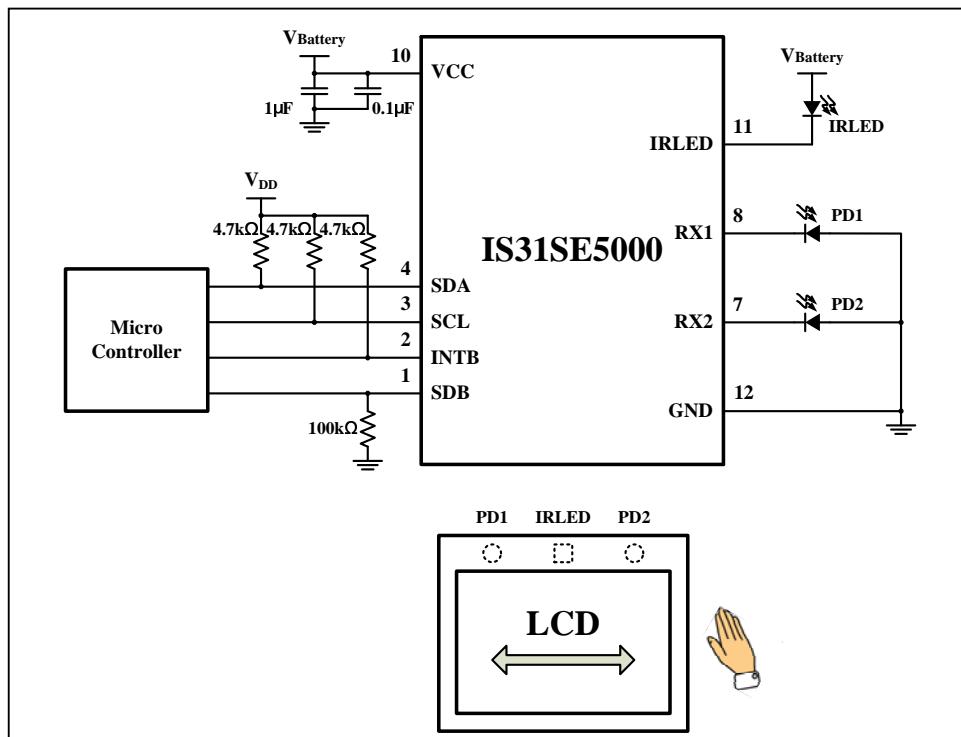
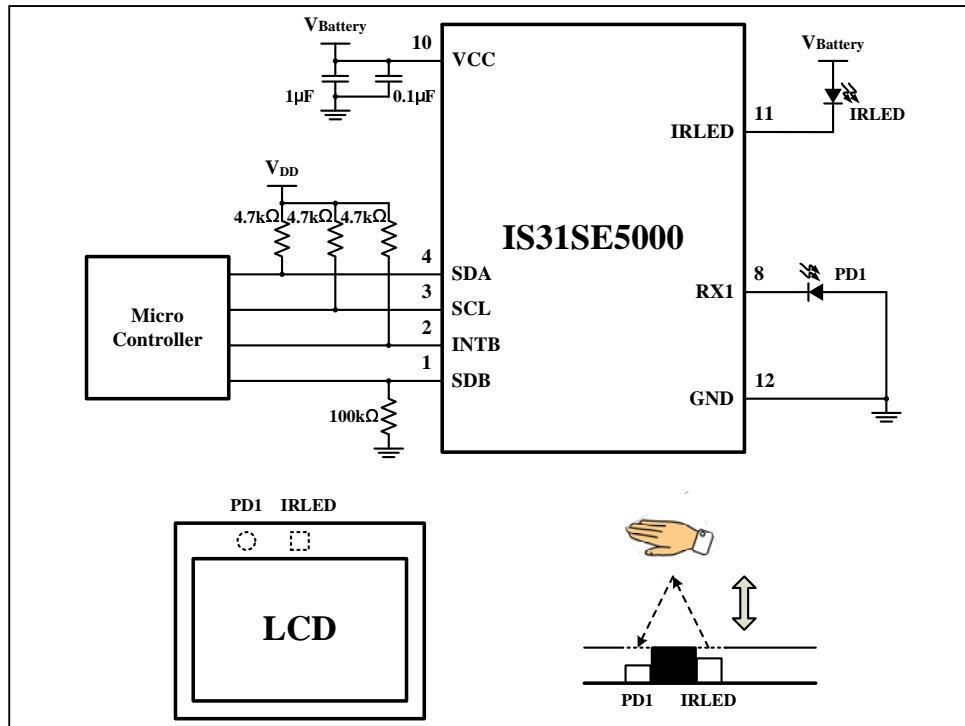
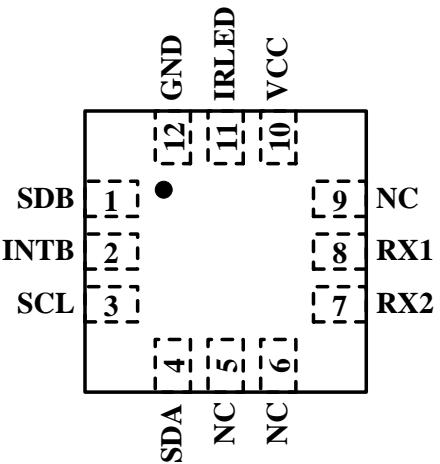




Figure 1 Typical Application Circuit (Motion Mode)

Figure 2 Typical Application Circuit (Proximity Mode)

IS31SE5000**PIN CONFIGURATION**

Package	Pin Configuration (Top View)
UTQFN-12	

PIN DESCRIPTION

No.	Pin	Description
1	SDB	Shutdown pin, low active.
2	INTB	Interrupt signal, pulled down to inform master to read data.
3	SCL	The input for the I2C clock signal.
4	SDA	The input for the I2C data signal.
5,6,9	NC	Not connect.
7	RX2	Input signal of channel 2 infrared LED receiver.
8	RX1	Input signal of channel 1 infrared LED receiver.
10	VCC	Power supply.
11	IRLED	IRLED emitting pin. Connect to IRLED.
12	GND	Ground.

Copyright © 2012 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:

- a.) the risk of injury or damage has been minimized;
- b.) the user assume all such risks; and
- c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances

IS31SE5000

ORDERING INFORMATION

Industrial Range: -40°C to +85°C

Order Part No.	Package	QTY/Reel
IS31SE5000-UTLS2-TR	UTQFN-12, Lead-free	3000

ABSOLUTE MAXIMUM RATINGS

Supply voltage, V_{CC}	-0.3V ~ +6.0V
Voltage at any input pin	-0.3V ~ $V_{CC}+0.3V$
Maximum junction temperature, T_{JMAX}	150°C
Operating temperature range, T_A	-40°C ~ +85°C
Storage temperature range, T_{STG}	-65°C ~ +150°C

Note:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$T_A = 25^\circ C$, $V_{CC} = 2.7V \sim 5.5V$, unless otherwise noted. Typical value are $T_A = +25^\circ C$, $V_{CC} = 3.6V$.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Unit
V_{CC}	Supply voltage		2.7		5.5	V
I_{CC}	Quiescent current	$V_{SDB} = V_{CC}$		0.6		mA
I_{SD}	Shutdown current	$V_{SDB} = 0V$		1	3	μA
I_{IR}	Average current of IRLED	$V_{LED} = 3.6V$ (Note 1)		0.8		mA
I_P	Peak current of IRLED	EC = "000" (Note 1,2)		400		mA
V_{INT}	INTB pin output voltage low	$I_{OL} = 4mA$			0.2	V
L	Maximum detect distance	EC = "000" (Note 3)		9		cm
V_{IH}	Input logic high voltage	$V_{CC} = 2.7V$			0.4	V
V_{IL}	Input logic low voltage	$V_{CC} = 5.5V$	1.4			V

DIGITAL INPUT SWITCHING CHARACTERISTICS (Note 1)

Symbol	Parameter	Condition	Min.	Typ.	Max.	Unit
f_{SCL}	Serial-Clock frequency				400	kHz
t_{BUF}	Bus free time between a STOP and a START condition		1.3			μs
$t_{HD, STA}$	Hold time (repeated) START condition		0.6			μs
$t_{SU, STA}$	Repeated START condition setup time		0.6			μs
$t_{SU, STO}$	STOP condition setup time		0.6			μs
$t_{HD, DAT}$	Data hold time				0.9	μs
$t_{SU, DAT}$	Data setup time		100			ns
t_{LOW}	SCL clock low period		1.3			μs
t_{HIGH}	SCL clock high period		0.7			μs
t_R	Rise time of both SDA and SCL signals, receiving	(Note 4)		20+0.1Cb	300	ns
t_F	Fall time of both SDA and SCL signals, receiving	(Note 4)		20+0.1Cb	300	ns

Note 1: Guaranteed by design.

Note 2: The EC bit is used to set the emitting current. Please refer to the detailed information in Page 8.

Note 3: Because of different IRLED, receive LED and material of cover, the detection distance will be different. The detail parameter should be tested. IR11-21C/TR8 (for IRLED) and PD15-22C-R/TR8 (for PD) is recommended.

Note 4: C_b = total capacitance of one bus line in pF. $I_{SINK} \leq 6mA$. t_R and t_F measured between $0.3 \times V_{CC}$ and $0.7 \times V_{CC}$.

DETAILED DESCRIPTION

I2C INTERFACE

The IS31SE5000 uses a serial bus, which conforms to the I2C protocol, to control the chip's functions with two wires: SCL and SDA. The IS31SE5000 has a 7-bit slave address (A7:A1), followed by the R/W bit, A0. Set A0 to "0" for a write command and set A0 to "1" for a read command.

The complete slave address is:

Table 1 Slave Address (Write only):

Bit	A7:A1	A0
Value	1010101	1/0

The SCL line is uni-directional. The SDA line is bi-directional (open-collector) with a pull-up resistor (typically 4.7kΩ). The maximum clock frequency specified by the I2C standard is 400kHz. In this discussion, the master is the microcontroller and the slave is the IS31SE5000.

The timing diagram for the I2C is shown in Figure 3. The SDA is latched in on the stable high level of the SCL. When there is no interface activity, the SDA line should be held high.

The "START" signal is generated by lowering the SDA signal while the SCL signal is high. The start signal will alert all devices attached to the I2C bus to check the incoming address against their own chip address.

The 8-bit chip address is sent next, most significant bit first. Each address bit must be stable while the SCL level is high.

After the last bit of the chip address is sent, the master checks for the IS31SE5000's acknowledge. The master releases the SDA line high (through a pull-up resistor). Then the master sends an SCL pulse. If the IS31SE5000 has received the address correctly, then it holds the SDA line low during the SCL pulse. If the SDA line is not low, then the master should send a "STOP" signal (discussed later) and abort the transfer.

Following acknowledgement of IS31SE5000, the register address byte is sent, most significant bit first. IS31SE5000 must generate another acknowledge indicating that the register address has been received.

Then 8-bit of data byte are sent next, most significant bit first. Each data bit should be valid while the SCL level is stable high. After the data byte is sent, the IS31SE5000 must generate another acknowledge to indicate that the data was received.

The "STOP" signal ends the transfer. To signal "STOP", the SDA signal goes high while the SCL signal is high.

READING PORT REGISTERS

To read the device data, the bus master must first send the IS31SE5000 address with the R/W bit set to "0", followed by the command byte, which determines which register is accessed. After a restart, the bus master must then send the IS31SE5000 address with the R/W bit set to "1". Data from the register defined by the command byte is then sent from the IS31SE5000 to the master (Figure 6).

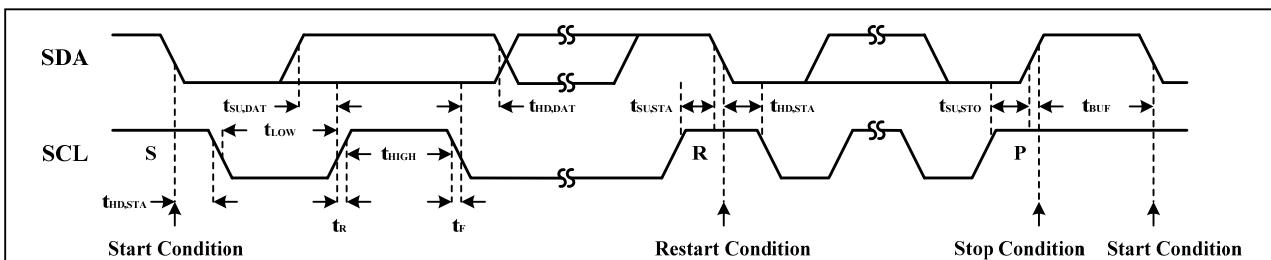


Figure 3 Interface timing

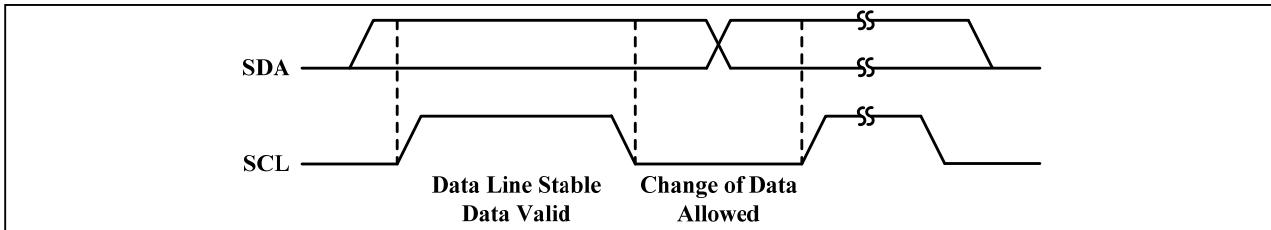
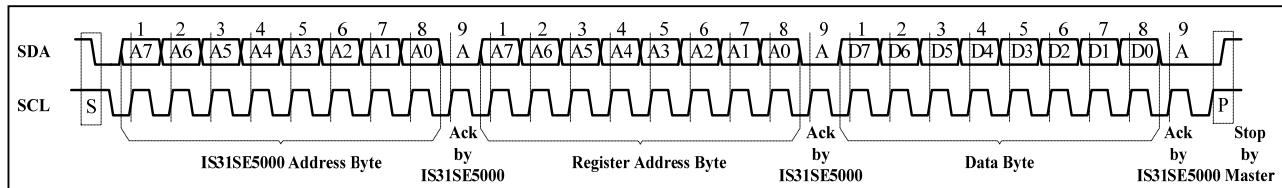
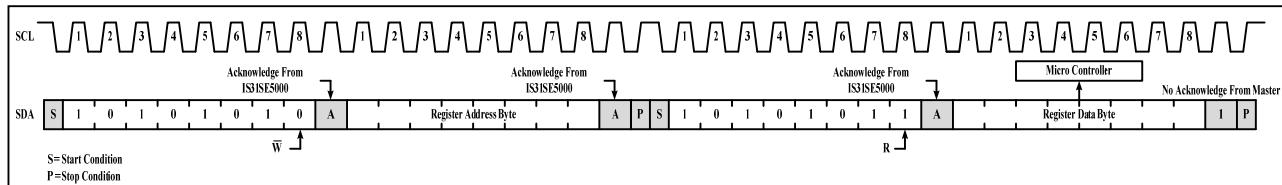




Figure 4 Bit transfer

Figure 5 Writing to IS31SE5000

Figure 6 Reading from IS31SE5000

REGISTERS DEFINITIONS

Table 2 Register Function

Address	Name	Function	R/W	Table	Default
00h	Status Register	Store the motion information	R	3	xxxx xxxx
01h	Shutdown Register	Set software shutdown	W	4	0000 0000
11h	Configuration Register	Configure operating function	W	5	

Table 3 00h Status Register (Read Only)

Bit	D7:D4	D3:D2	D1:D0
Name	-	PD	MD
Default	-	-	-

The Status Register stores the motion information which detected by IS31SE5000.

PD Proximity Detection (Figure 7)

01 Be off

10 Be close

Others No motion

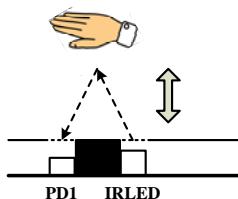


Figure 7 Proximity Mode Detect (Side View)

MD Motion Detection (Figure 8)

01 From PD2 to PD1

10 From PD1 to PD2

Others No motion

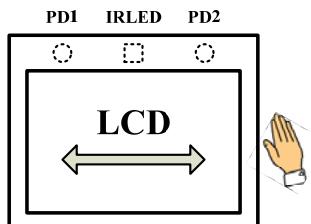


Figure 8 Motion Mode Detect (Top View)

Table 4 01h Shutdown Register

Bit	D7:D1	D0
Name	-	SSD
Default	0000000	0

The Shutdown Register sets software shutdown mode of IS31SE5000.

SSD Software Shutdown Enable

0 Software shutdown mode

1 Normal operation

Table 5 11h Configuration Register

Bit	D7:D4	D3:D1	D0
Name	-	EC	MODE
Default	0000	000	0

The Configuration Register sets the operating function.

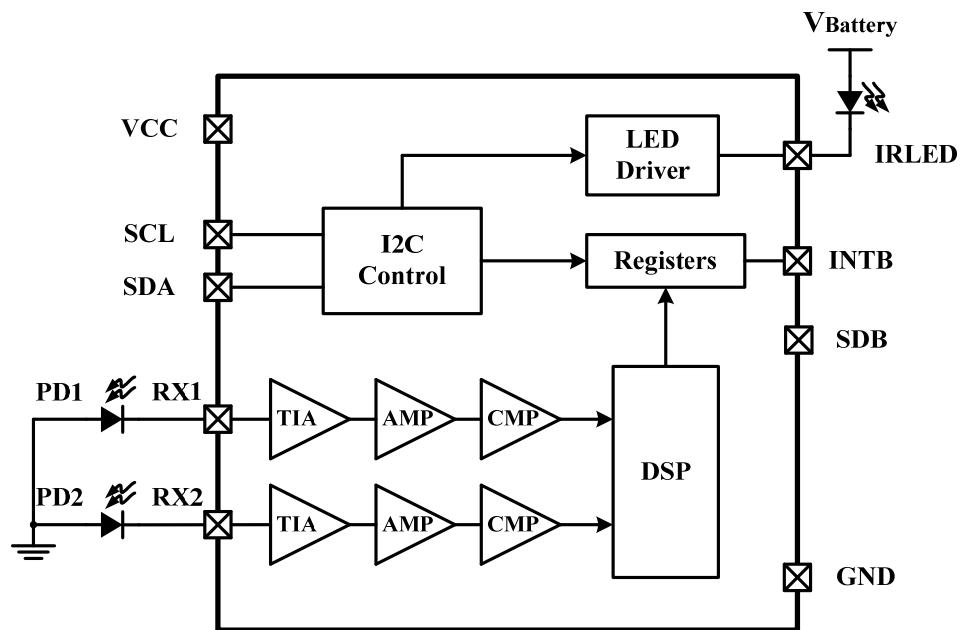
EC Emitting Current Setting

(Adjusting detection distance, refer to detail information in Page 10)

000 400mA

001 280mA

01x 210mA


1xx 70mA

MODE Mode Selection

0 Motion mode

1 Proximity mode

FUNCTIONAL BLOCK DIAGRAM

APPLICATION INFORMATION

GENERAL DESCRIPTION

The IS31SE5000 is a low-power, reflectance-based infrared light sensor with advanced signal processing and digital output. The sensor can detect making touchless motion possible.

MODE CONTROL

By setting the MODE bit of Configuration Register (11h) IS31SE5000 operates in Motion Mode or Proximity Mode.

When setting the MODE bit to "0", IS31SE5000 operates in the Motion Mode. When the MODE bit is set to "1", IS31SE5000 operates in the Proximity Mode.

STATUS INFORMATION

Master can get the current motion information by reading the PD, MD bits of Status Register (00h).

MOTION MODE

The MD bit is available when IS31SE5000 operates in the Motion Mode. If the MD bit is "01", it means the current motion is from PD2 to PD1. If the MD bit is "10", it means the current motion is from PD1 to PD2 (Table 3). If MD bit is other data, there is no motion.

PROXIMITY MODE

The PD bit is available when IS31SE5000 operates in the Proximity Mode. If the PD bit is "01", it means the object is away from the IC. If the PD bit is "10", it means the object is close to the IC (Table 3). If PD bit is other data, there is no motion.

INTERRUPTION

The changing of motion can be signed by the INTB pin. The INTB pin will be pulled low when object moving before the LCD panel (PD or MD bit changing). And the MCU can get the information via reading the Status Register (00h). The INTB will be back to high until the MCU reading the Status Register (00h). The INTB pin will be high automatically when it stays low last 10ms to ensure system operating normally.

DETECTION DISTANCE

The emitting current can be adjusted by the EC bit of Configuration Register (11h). The larger current is, the longer distance detected.

Because of the different IRLED, receiver and material of cover, the detection distance will be different for the same emitting current. Detail information should be decided by testing.

In the stable mode, the average emitting current for both two modes, I_{IR} , can be calculated by the Equation (1):

$$I_{IR} = \frac{1}{512} \times I_{EC} \quad (1)$$

In the operating mode, the average emitting current for the Proximity Mode is the same as stable mode. And the average emitting current for the Motion Mode can be calculated by the Equation (2):

$$I_{IR} = \frac{1}{8} \times I_{EC} \quad (2)$$

The I_{EC} is the emitting current which setting by the EC bit.

SHUTDOWN MODE

Shutdown mode can be used as a means of reducing power consumption. During shutdown mode all registers retain their data.

SOFTWARE SHUTDOWN

By setting SSD bit of the Shutdown Register (01h) to "0", the IS31SE5000 will operate in software shutdown mode.

HARDWARE SHUTDOWN

The chip enters hardware shutdown mode when the SDB pin is pulled low, wherein they consume only 1 μ A (Typ.) current.

CLASSIFICATION REFLOW PROFILES

Profile Feature	Pb-Free Assembly
Preheat & Soak Temperature min (Tsmin) Temperature max (Tsmax) Time (Tsmin to Tsmax) (ts)	150°C 200°C 60-120 seconds
Average ramp-up rate (Tsmax to Tp)	3°C/second max.
Liquidous temperature (TL) Time at liquidous (tL)	217°C 60-150 seconds
Peak package body temperature (Tp)*	Max 260°C
Time (tp)** within 5°C of the specified classification temperature (Tc)	Max 30 seconds
Average ramp-down rate (Tp to Tsmax)	6°C/second max.
Time 25°C to peak temperature	8 minutes max.

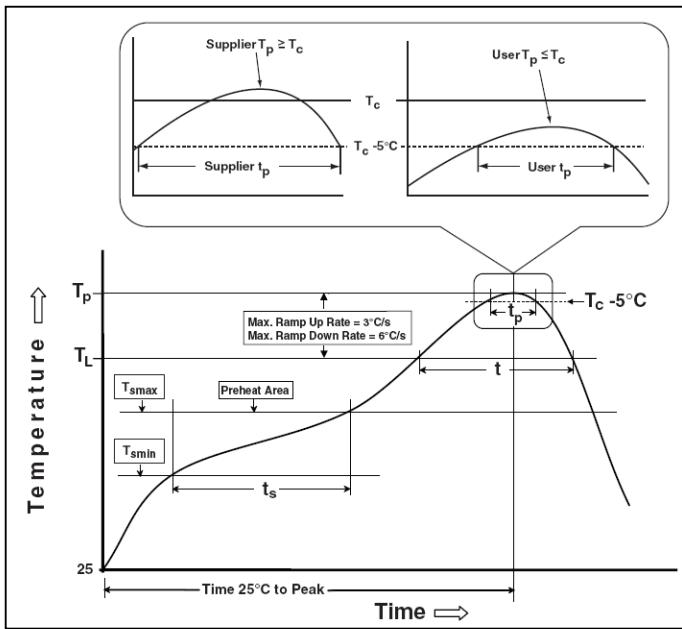
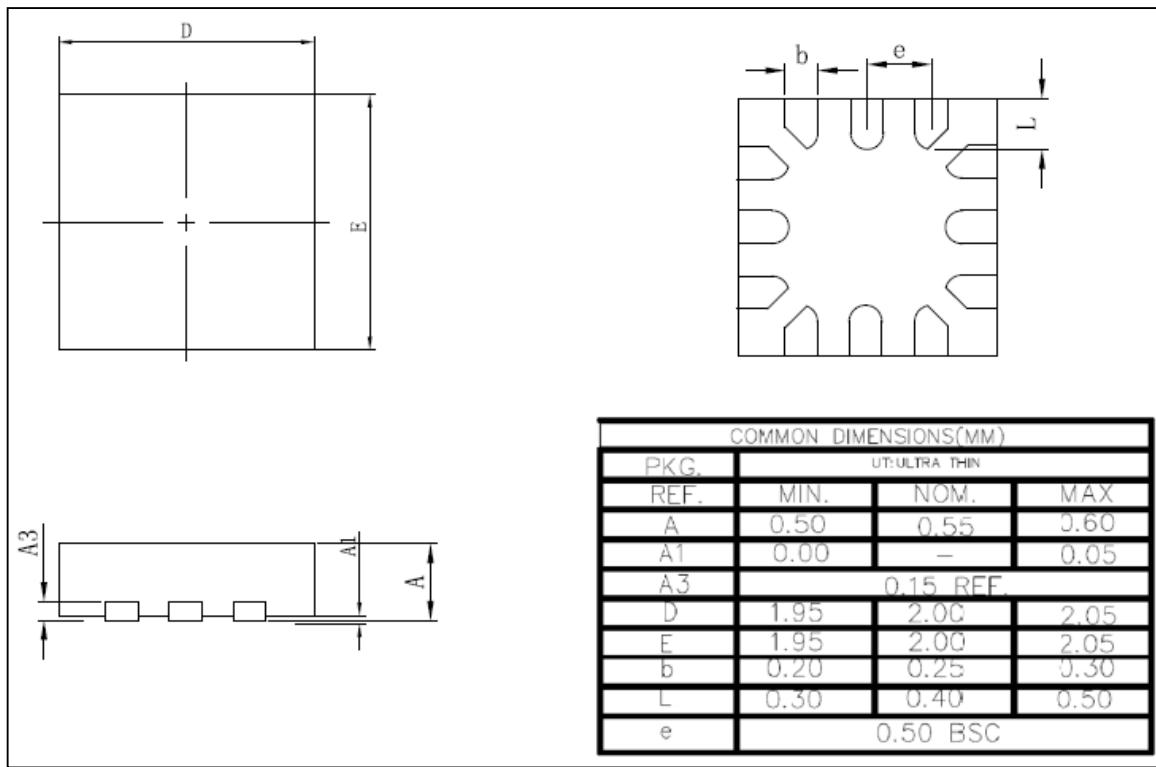



Figure 9 Classification Profile

PACKAGE INFORMATION**UTQFN-12**

Note: All dimensions in millimeters unless otherwise stated.

射频和天线设计培训课程推荐

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立，致力并专注于微波、射频、天线设计研发人才的培养；我们于 2006 年整合合并微波 EDA 网(www.mweda.com)，现已发展成为国内最大的微波射频和天线设计人才培养基地，成功推出多套微波射频以及天线设计经典培训课程和 ADS、HFSS 等专业软件使用培训课程，广受客户好评；并先后与人民邮电出版社、电子工业出版社合作出版了多本专业图书，帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、研通高频、埃威航电、国人通信等多家国内知名公司，以及台湾工业技术研究院、永业科技、全一电子等多家台湾地区企业。

易迪拓培训推荐课程列表：<http://www.edatop.com/peixun/tuijian/>

射频工程师养成培训课程套装

该套装精选了射频专业基础培训课程、射频仿真设计培训课程和射频电路测量培训课程三个类别共 30 门视频培训课程和 3 本图书教材；旨在引领学员全面学习一个射频工程师需要熟悉、理解和掌握的专业知识和研发设计能力。通过套装的学习，能够让学员完全达到和胜任一个合格的射频工程师的要求…

课程网址：<http://www.edatop.com/peixun/rfe/110.html>

手机天线设计培训视频课程

该套课程全面讲授了当前手机天线相关设计技术，内容涵盖了早期的外置螺旋手机天线设计，最常用的几种手机内置天线类型——如 monopole 天线、PIFA 天线、Loop 天线和 FICA 天线的设计，以及当前高端智能手机中较常用的金属边框和全金属外壳手机天线的设计，通过该套课程的学习，可以帮助您快速、全面、系统地学习、了解和掌握各种类型的手机天线设计，以及天线及其匹配电路的设计和调试…

课程网址：<http://www.edatop.com/peixun/antenna/133.html>

WiFi 和蓝牙天线设计培训课程

该套课程是李明洋老师应邀给惠普 (HP) 公司工程师讲授的 3 天员工内训课程录像，课程内容是李明洋老师十多年工作经验积累和总结，主要讲解了 WiFi 天线设计、HFSS 天线设计软件的使用，匹配电路设计调试、矢量网络分析仪的使用操作、WiFi 射频电路和 PCB Layout 知识，以及 EMC 问题的分析解决思路等内容。对于正在从事射频设计和天线设计领域工作的您，绝对值得拥有和学习！…

课程网址：<http://www.edatop.com/peixun/antenna/134.html>

CST 学习培训课程套装

该培训套装由易迪拓培训联合微波 EDA 网共同推出, 是最全面、系统、专业的 CST 微波工作室培训课程套装, 所有课程都由经验丰富的专家授课, 视频教学, 可以帮助您从零开始, 全面系统地学习 CST 微波工作的各项功能及其在微波射频、天线设计等领域的设计应用。且购买该套装, 还可超值赠送 3 个月免费学习答疑…

课程网址: <http://www.edatop.com/peixun/cst/24.html>

HFSS 学习培训课程套装

该套课程套装包含了本站全部 HFSS 培训课程, 是迄今国内最全面、最专业的 HFSS 培训教程套装, 可以帮助您从零开始, 全面深入学习 HFSS 的各项功能和在多个方面的工程应用。购买套装, 更可超值赠送 3 个月免费学习答疑, 随时解答您学习过程中遇到的棘手问题, 让您的 HFSS 学习更加轻松顺畅…

课程网址: <http://www.edatop.com/peixun/hfss/11.html>

ADS 学习培训课程套装

该套装是迄今国内最全面、最权威的 ADS 培训教程, 共包含 10 门 ADS 学习培训课程。课程是由具有多年 ADS 使用经验的微波射频与通信系统设计领域资深专家讲解, 并多结合设计实例, 由浅入深、详细而又全面地讲解了 ADS 在微波射频电路设计、通信系统设计和电磁仿真设计方面的内容。能让您在最短的时间内学会使用 ADS, 迅速提升个人技术能力, 把 ADS 真正应用到实际研发工作中去, 成为 ADS 设计专家…

课程网址: <http://www.edatop.com/peixun/ads/13.html>

我们的课程优势:

- ※ 成立于 2004 年, 10 多年丰富的行业经验,
- ※ 一直致力并专注于微波射频和天线设计工程师的培养, 更了解该行业对人才的要求
- ※ 经验丰富的一线资深工程师讲授, 结合实际工程案例, 直观、实用、易学

联系我们:

- ※ 易迪拓培训官网: <http://www.edatop.com>
- ※ 微波 EDA 网: <http://www.mweda.com>
- ※ 官方淘宝店: <http://shop36920890.taobao.com>