

Antenna Design for Improved Efficiency and Reduced SAR

Frank M. Caimi, Ph.D.

Kerry L. Greer

April 2001

Introduction

The wireless revolution has spawned a flood of new products that dramatically increase the availability of voice and data nearly anywhere in the world. While this revolution has significantly expanded the opportunity for new and better wireless communication terminals, it has made design considerations for antennas more involved than ever before.

Before the evolution of mobile handsets and portable wireless terminals, antenna engineers were able to develop designs based on individual radio specifications and requirements. Elements of the design included a variety of factors, such as gain, bandwidth, and polarization. However, with the recent emphasis on reducing size, providing increased power efficiency, and meeting FCC requirements for mobile handset emissions, two additional elements of the antenna design have risen in importance. Antenna efficiency and control of Specific Absorption Rate (SAR) are new factors that must be equally considered along side traditional design parameters.

SAR Design Issues

In the United States and in other countries, cellular and other wireless handsets must meet regulatory requirements for maximum SAR levels. The motivation for developing these regulations has been to ensure appropriate limits for users of wireless handsets from the standpoint of energy absorption into body tissues. Although the radio frequency emissions of wireless handsets are classified as non-ionizing, they are able to transfer energy in the form of heat to any absorptive material. The antenna location, near field emission characteristics, radio frequency power, and frequency establish the basis for conformance to SAR limits.

In the interest of ensuring public and user safety, the FCC and other regulatory bodies have developed safety standards for mobile phone radio frequency emissions. All cellular and PCS phones manufactured after August 1, 1996 must be tested for compliance against these FCC guidelines for safe exposure. Also, all PCS handsets subject to equipment authorization since 1994 are required to meet FCC safety guidelines. SAR is defined mathematically as the time derivative of the incremental energy (dU) deposited in an incremental mass (dm) contained in a volume element (dV) of density (ρ):

$$\text{SAR} = \frac{dU}{dt} \{ \frac{dU}{dm} \} = \frac{dU}{dt} \{ \frac{dU}{dV} \} = \frac{E^2}{\rho}$$

As indicated, SAR can be also be computed from the total electric field strength (E), the conductivity of the medium (σ), and the density of the mass (ρ). Thus, SAR is a measure that estimates the amount of radio frequency power absorbed in a unit mass of body tissue. SAR is measured in units of watts per kilogram, or equivalently in milliwatts

per gram, averaged over a specified volume of measurement. The limit for SAR in Australia, United States, and Canada is 1.6 milliwatts per gram. In Korea and Japan it is 2 milliwatts per gram. In Europe, the testing is voluntary.

SAR limits are different for different regions of the body, as well as the volume over which the average is made. Since cellular antennas can produce highly localized near field intensities, small test volumes—perhaps as small as 1 cubic centimeter — are used where the near field concentration of energy may be the highest. At present, this volume is nearing the lower limit over which measurements can be accurately made, and represents the required volume for measurements applicable to the head.

SAR test procedures and data are available for most new phones at the FCC website www.fcc.gov/oet/fccid. It is necessary to find the manufacturer ID code and model ID in order to access this information. Compliance with the recommended maximum SAR limits is usually obtained under specific conditions. Tests are done with the antenna extended and with it stowed. In some cases, the antenna must be held at a minimum distance from the body in order to meet the 1.6 mW-per-gram SAR limit.

There are five primary factors that control actual versus measured SAR values. These are the frequency (energy) of the incident radiation in relation to the composition of the test mass; the radiation intensity (near field pattern) of the energy source and the proximity of the source to the test mass; the presence of reflecting surfaces and their orientation; the power provided by the RF output stage to maintain communication; and the polarity (orientation) of the field vectors in relation to the test mass. Little control is afforded for the first factor, since operating frequency is fixed for most wireless services. This leaves various combinations of the remaining factors as possible design solutions.

Depending on the particular wireless standard, active control of the RF power output is used by most wireless handsets to conserve battery life, so actual SAR is lower than the maximum possible. But manufacturers must meet the imposed requirements under the condition of full power output, since prolonged operation in fringe reception areas is possible. Since the output power may be up to ~1/2 watt from cellular phones, careful design is required to meet the 1.6 milliwatts/gram limit. The available options are techniques that increase the distance from the phone's antenna to the user, and that control the near field RF emission from the phone. Specifically these are: transmitting at lower than optimal (for communication) power levels to comply with regulations; moving the transmitting antenna far enough away from the user to achieve compliance; transmitting in a non-uniform (non-circular) pattern to reduce RF power density toward the user; and distributing the near field power emitted by the antenna to reduce the power density available.

In essence, the design strategy has become a complex procedure of locating the antenna for good performance, while minimizing measured SAR. Measurements are generally conducted using a phantom head or body composed of a gel-like material that has similar dielectric properties as those of the human body. Since SAR is affected by the aforementioned factors, it is necessary to test using realistic products, i.e., with a near-final production design of the phone with a properly located antenna. Manufacturers often use existing ground planes to shield the user from the antenna. They also have the option of using parasitic antenna elements external to the case as reflectors to control the near-field antenna pattern. The latter solution can be cumbersome when used with a monopole antenna since an additional rod element must

be located between the user and the antenna. Patch antennas and variants on the loop antenna can permit design flexibility without resorting to cumbersome reflector elements.

Another approach is to purposely design an antenna to minimize near field emissions in a particular direction. The design approach for achieving this is to limit the power density toward the user to meet the SAR requirement, while re-directing most of the signal away from the user. This has the complementary benefit of putting the previously absorbed energy to new use, boosting reception in other directions.

An example of an antenna exhibiting the desired radiation characteristics without the use of parasitic reflectors is the meander line antenna originally developed for military use and now being commercialized by SkyCross, Inc. This antenna has the ability to operate at two or more frequency bands simultaneously without dynamic tuning, is highly efficient, and approaches the Chu-Harrington limit in terms of small volumetric size for a given bandwidth of operation. The radiation pattern in one of its operating modes mimics the far field pattern of a monopole or dipole. A significant reduction of the near field is achieved due to its novel design. The antenna produces a reduced near field intensity advantage from 3 to 10 dB depending on position at 1" distance when compared to a quarter-wave monopole at the same distance. A difficulty with the standard monopole is the dependence on the ground plane as a conjugate radiating element, as well as its small cross-section. The former characteristic has the effect of placing the user in capacitive contact with radiating portions of the antenna system while the latter provides for high field strengths in close proximity to the antenna, which can produce radiation densities that may exceed government safety limits if adequate spacing or shielding cannot be obtained. The near field reduction in the meander line antenna is due to its spatially distributed radiating sections which sum to form the far field radiation pattern. At some distance from the antenna, the far field intensities of both antennas are identical, assuming equal losses.

Improved Efficiency

Combining spatial distribution methodology of the meander line, or other spatially distributed antennas, with the use of fractional wavelength reflectors, such as circuit-board ground planes or shields, can result in additional reduction of near field intensity in the direction of the user. The same is possible with loop and patch antennas, but efficiency and bandwidth must be considered to obtain the desired level of performance. Directing radiation away from the user can actually be preferable when handset performance is considered, as measurements suggest that 40% of the RF power from a mobile phone in either the 800-MHz or 1900-MHz band is absorbed by the user's head when an omni-directional antenna is used. Directing this energy away from the user allows most of the emitted RF energy to be recovered, which can in some conditions improve overall average performance. This is particularly true in propagation environments where the signal is subject to multiple reflections, as in dense urban settings. In the worst case, the energy is directed away from the cellular tower but at a higher effective radiated power than would be possible with an omni-directional antenna that would be subject to absorption from the user's body. In the case where the maximum radiation direction is toward the tower, active power control can reduce the RF power output from the transmitter to a lower level than that achieved with an omni-directional antenna, producing the same received signal level.

The aforementioned use of spatially distributed antenna elements might not only provide advantages in meeting SAR limits, but might also provide additional overall performance improvements from the standpoint of antenna diversity. However, advantages with respect to SAR are only possible if the average power from each antenna element is sufficiently shared.

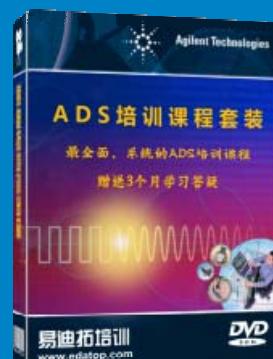
In order for improved efficiencies to be realized, it is also necessary to prevent the antenna detuning that can occur from proximity to objects via electromagnetic (capacitive or inductive) coupling. An obvious way to avoid such problems is to limit proximal coupling by intentional use of shielding, or through active control of the antenna itself. The latter method can be highly effective, but adds complexity to the design. The former requires special considerations in antenna design through modeling and test.

While smaller and more efficient communications terminals are being developed through circuit refinements, battery design improvements, and circuit integration, antenna design remains an important process for achieving conformance to standards and optimal performance with minimal interaction from the environment. Methods exist for minimization of near field intensities and SAR through the use of distributed antenna elements combined with design processes that place the antenna optimally with respect to case shields and the user. The meander line family of antennas exhibit reduced near field intensities, and can be configured to produce directional radiation characteristics. Such methods avoid the use of absorbing materials to protect the user, and can result in simultaneous improved performance and safety.

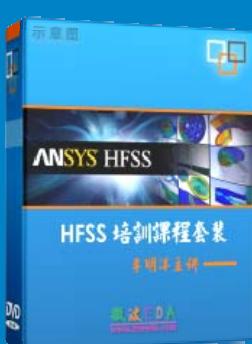
射 频 和 天 线 设 计 培 训 课 程 推 荐

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立，致力并专注于微波、射频、天线设计研发人才的培养；我们于 2006 年整合合并微波 EDA 网(www.mweda.com)，现已发展成为国内最大的微波射频和天线设计人才培养基地，成功推出多套微波射频以及天线设计经典培训课程和 ADS、HFSS 等专业软件使用培训课程，广受客户好评；并先后与人民邮电出版社、电子工业出版社合作出版了多本专业图书，帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、研通高频、埃威航电、国人通信等多家国内知名公司，以及台湾工业技术研究院、永业科技、全一电子等多家台湾地区企业。

易迪拓培训课程列表：<http://www.edatop.com/peixun/rfe/129.html>


射频工程师养成培训课程套装

该套装精选了射频专业基础培训课程、射频仿真设计培训课程和射频电路测量培训课程三个类别共 30 门视频培训课程和 3 本图书教材；旨在引领学员全面学习一个射频工程师需要熟悉、理解和掌握的专业知识和研发设计能力。通过套装的学习，能够让学员完全达到和胜任一个合格的射频工程师的要求…


课程网址：<http://www.edatop.com/peixun/rfe/110.html>

ADS 学习培训课程套装

该套装是迄今国内最全面、最权威的 ADS 培训教程，共包含 10 门 ADS 学习培训课程。课程是由具有多年 ADS 使用经验的微波射频与通信系统设计领域资深专家讲解，并多结合设计实例，由浅入深、详细而又全面地讲解了 ADS 在微波射频电路设计、通信系统设计和电磁仿真设计方面的内容。能让您在最短的时间内学会使用 ADS，迅速提升个人技术能力，把 ADS 真正应用到实际研发工作中去，成为 ADS 设计专家…

课程网址：<http://www.edatop.com/peixun/ads/13.html>

HFSS 学习培训课程套装

该套课程套装包含了本站全部 HFSS 培训课程，是迄今国内最全面、最专业的 HFSS 培训教程套装，可以帮助您从零开始，全面深入学习 HFSS 的各项功能和在多个方面的工程应用。购买套装，更可超值赠送 3 个月免费学习答疑，随时解答您学习过程中遇到的棘手问题，让您的 HFSS 学习更加轻松顺畅…

课程网址：<http://www.edatop.com/peixun/hfss/11.html>

CST 学习培训课程套装

该培训套装由易迪拓培训联合微波 EDA 网共同推出, 是最全面、系统、专业的 CST 微波工作室培训课程套装, 所有课程都由经验丰富的专家授课, 视频教学, 可以帮助您从零开始, 全面系统地学习 CST 微波工作的各项功能及其在微波射频、天线设计等领域的设计应用。且购买该套装, 还可超值赠送 3 个月免费学习答疑…

课程网址: <http://www.edatop.com/peixun/cst/24.html>

HFSS 天线设计培训课程套装

套装包含 6 门视频课程和 1 本图书, 课程从基础讲起, 内容由浅入深, 理论介绍和实际操作讲解相结合, 全面系统的讲解了 HFSS 天线设计的全过程。是国内最全面、最专业的 HFSS 天线设计课程, 可以帮助您快速学习掌握如何使用 HFSS 设计天线, 让天线设计不再难…

课程网址: <http://www.edatop.com/peixun/hfss/122.html>

13.56MHz NFC/RFID 线圈天线设计培训课程套装

套装包含 4 门视频培训课程, 培训将 13.56MHz 线圈天线设计原理和仿真设计实践相结合, 全面系统地讲解了 13.56MHz 线圈天线的工作原理、设计方法、设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体操作, 同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试。通过该套课程的学习, 可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹配电路的原理、设计和调试…

详情浏览: <http://www.edatop.com/peixun/antenna/116.html>

我们的课程优势:

- ※ 成立于 2004 年, 10 多年丰富的行业经验,
- ※ 一直致力并专注于微波射频和天线设计工程师的培养, 更了解该行业对人才的要求
- ※ 经验丰富的一线资深工程师讲授, 结合实际工程案例, 直观、实用、易学

联系我们:

- ※ 易迪拓培训官网: <http://www.edatop.com>
- ※ 微波 EDA 网: <http://www.mweda.com>
- ※ 官方淘宝店: <http://shop36920890.taobao.com>