专注于射频工程师,天线工程师和电子硬件工程师的培养
首页 > 技术文库 > 硬件设计 > 测试测量 > 温度传感器DSl8820在测色系统中的应用

温度传感器DSl8820在测色系统中的应用

时间:2020-12-14 点击:

 

在光电积分式测色系统设计中,通常选用硅光电池作为光电探测器,硅光电池能够把光信息(能量)直接转化成电信息(能量),便于对被测信号进行处理。由于标准光源照明体灯管壁温度较高,对探测器内部的温度影响很大,硅光电池受温度影响产生电压漂移,这势必会影响到测量的精度和稳定性。通过研究硅光电池的光电转换特性随温度变化的规律,设计了使用数字温度传感器DSl8820的一种V—T曲线控制补偿方法,对测色系统进行适当的电压补偿,使其达到更好的性能指标。

1 硅光电池特性

在测色系统中,经过光电探测器把采集到的被测样本的光信号转换为电信号,采集输出的电信号极其微弱,需要对这些电信号进行转换和放大处理,在这些环节中引起温度漂移的原因主要有2点:

(1)硅光电池的温度特性对输出电压有很大影响;

(2)在放大电路中,任何参数的变化,如电源电压的波动、元件的老化、半导体元件参数随温度变化而产生的变化,都将产生输出电压的漂移。

硅光电池的温度特性是指开路电压和短路电流随温度变化的情况。由于它关系到应用光电池的仪器设备的温度漂移,影响测量精度或控制精度等重要指标,因此温度特性是硅光电池的重要特性之一。从图1中可以看出硅光电池开路电压随温度上升而明显下降,短路电流随温度上升却是缓慢增加的。因此,在采用硅光电池作为检测元件时,应考虑温度漂移的影响,并采用相应的补偿措施。

20110707112141231.jpg

 

2 DSl8820实时温度采集

DSl8820是DALLAS公司生产的单线式智能数字温度传感器,具有3引脚TO一92小体积封装形式,其中:DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地)。DSl8820内部结构主要由4部分组成:64位ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。

DSl8820的测温原理如图2所示:每次测量前,首先将一55℃所对应的基数分别置人减法计数器1和温度寄存器中。减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时,温度寄存器的值将加1,减法计数器l的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直至温度寄存器值达到被测温度值。

20110707112141660.jpg

 

3 V—T曲线控制温度补偿的设计方案

光源产生的热量和探测器的机械结构使得光电探测器内部温度随测量时间的增加不断升高,硅光电池采集的三路模拟信号的电压值随之逐渐下降。针对这种现象通常采用分时间段对这三路信号的电压值进行补偿。实验表明,时间与电压值的关系并不能作为准确的控制3路模拟信号电压值补偿的依据:一方面,按时间变化采集的3路模拟信号的电压值并不是完全线性的;另一方面,硅光电池的温度特性才是产生温度漂移最主要的原因。

这里采用温度传感器DSl8820获取实时温度,结合电压值分析得出温度补偿系数进行电压补偿,实现电压一温度曲线(V—T曲线)控制补偿。根据温度传感器的测温原理,设计了一种实现V—T曲线补偿的方法,系统总体框图如图3所示。按照式(1),结合实际测量数据分析得到适当的温度补偿系数K,实现温度上升时,对实测电压进行适当的补偿,使补偿后的实测电压值具有良好的稳定性。

式中,V0为电压初始值;V为电压实测值;T为实测温度;T0为温度初始值;K为温度补偿系数。

20110707112146756.jpg

 

CopyRight © 2009-2021,易迪拓培训 All Rights Reserved,沪ICP备05048810-2号 版权所有

网站地图

Top