专注于射频工程师,天线工程师和电子硬件工程师的培养
首页 > 技术文库 > 无线/射频/天线 > EMC/EMI > 传导式EMI的测量技术

传导式EMI的测量技术

时间:2020-12-14 点击:
  • 射频能量经由电源线传送时对PCB的影响。
  • 传导式EMI分为差模和共模两类。
  • 传导式EMI的测量方法。
  • 传导式EMI的限制。

传导式”(conducted)EMI是指部分的电磁(射频)能量透过外部缆线(cable)、电源线、I/O互连介面,形成“传导波”(propagation wave)被传送出去。本文将说明射频能量经由电源线传送时,所产生的“传导式杂讯”对PCB的影响,以及如何测量“传导式EMI”和FCC、CISPR的EMI限制规定。
差模和共模杂讯
“传导式EMI”可以分成两类:差模(Differential mode;DM)和共模(Common mode;CM)。差模也称作“对称模式(symmetric mode)”或“正常模式(normal mode)”;而共模也称作“不对称模式(asymmetric mode)”或“接地泄漏模式(ground leakage mode)”。
 
由EMI产生的杂讯也分成两类:差模杂讯和共模杂讯。简言之,差模杂讯是当两条电源供应线路的电流方向互为相反时发生的,如图1(a)所示。而共模杂讯是当所有的电源供应线路的电流方向相同时发生的,如图1(b)所示。一般而言,差模讯号通常是我们所要的,因为它能承载有用的资料或讯号;而共模讯号(杂讯)是我们不要的副作用或是差模电路的“副产品”,它正是EMC的最大难题。从图一中,可以清楚发现,共模杂讯的发生大多数是因为“杂散电容(stray capacitor)”的不当接地所造成的。这也是为何共模也称作“接地泄漏模式”的原因。
 
在图二中,L是“有作用(Live)”或“相位(Phase)”的意思,N是“中性(Neutral)”的意思,E是“安全接地或接地线(Earth wire)”的意思;EUT是“测试中的设备(Equipment Under Test)”之意思。在E下方,有一个接地符号,它是采用“国际电工委员会(International Electrotechnical Commission;IEC)”所定义的“有保护的接地(Protective Earth)”之符号(在接地线的四周有一个圆形),而且有时会以“PE”来注明。DM杂讯源是透过L和N对偶线,来推(push and pull)电流Idm。因为有DM杂讯源的存在,所以没有电流通过接地线路。杂讯的电流方向是根据交流电的周期而变化的。

电源供应电路所提供的基本的交流工作电流,在本质上也是差模的。因为它流进L或N线路,并透过L或N线路离开。不过,在图二中的差模电流并没有包含这个电流。这是因为工作电流虽然是差模的,但它不是杂讯。另一方面,对一个电流源(讯号源)而言,若它的基本频率是电源频率(line frequency)的两倍----100或120Hz,它实质上仍是属于“直流的”,而且不是杂讯;即使它的谐波频率,超过了标准的传导式EMI之限制范围(150 kHz to 30 MHz)。然而,必须注意的是,工作电流仍然保留有直流偏压的能量,此偏压是提供给滤波抗流线圈(filter choke)使用,因此这会严重影响EMI滤波器的效能。这时,当使用外部的电流探针来量测数据时,很可能因此造成测量误差。
返回路径

对杂讯电流而言,真正的返回路径(return path)是什么呢?

实体的电气路径之间的距离,最好是越大越好。因为如果没有EMI滤波器存在的话,部分的杂讯电流将会透过散布于各地的各种寄生性电容返回。其余部分将透过无线的方式返回,这就是辐射;由此产生的电磁场会影响相邻的导体,在这些导体内产生极小的电流。最后,这些极小的返回电流在电源供应输入端的总和会一直维持零值,因此不会违反“Kirchhoff定律”—在一封闭电路中,过一节点的电流量之代数和为零。

利用简单的数学公式,就可以将于L和N线路上所测得的电流,区分为CM电流和DM电流。但是为了避免发生代数计算的错误,必须先对电流的“正方向”做一定义。可以假设若电流由右至左流动,就是正方向,反之则为负方向。此外,必须记住的是:一个电流I若在任一线路中往一个方向流动时,这是等同于I往另一个方向流动的(Kirchhoff定律)。

例如:假设在一条线路(L或N)上,测得一个由右至左流动的电流2μA。并在另一条线路上,测得一个由左至右流动的电流5μA。CM电流和DM电流是多少呢?就CM电路而言,假设它的E连接到一个大型的金属接地平面,因此无法测量出流过E的电流值(如果可以测得,那将是简单的Icm)。这和一般离线的(off-line)电源供应器具有3条(有接地线)或2条(没有接地线)电线不同,不过,在后续的例子中,我们将会发现对那些接地不明的设备而言,其实它们具有一些泄漏(返回)路径。

以图一为例,假设第一次测量的线路是L(若选择N为首次测量的线路,底下所计算出来的结果也是一样的)。由此可以导出:
IL = Icm/2 + Idm= 2μA
IN = Icm/2 - Idm= -5μA
求解上面的联立方程式,可以得出:
Icm = -3μA
Idm = 3.5μA
这表示有一个3μA的电流,流过E(这是共模的定义)。而且,有一个3.5μA的电流在L和N线路中来回流动。

再举一个例子:假设测得一个2μA的电流在一条线路中由右至左流动,而且在另一条线路中没有电流存在,此时,CM电流和DM电流为多少?
IL = Icm/2 + Idm= 2μA
IN = Icm/2 - Idm= 0μA
对上面的联立方程式求解,可得出:
Icm = 2μA
Idm = 1μA

这是「非对称模式”的例子。从此结果可以看出,“非对称模式”的一部分可以视为“不对称(CM)模式”,而它的另一部分可视为“对称(DM)模式”。
传导式EMI的测量

为了要测量EMI,我们必须使用一个“阻抗稳定网路(Impedance Stabilization Network;ISN)”。和ISN类似的LISN已被应用到离线的电源供应电路中,其全名是「线路阻抗稳定网路(Line Impedance Stabilization Network;LISN)”或“仿真的主要网路(Artificial Mains Network;AMN)”。如图三所示,那是一个简易的电路图。若产品想要通过“国际射频干扰特别委员会(International Special Committee on Radio Interference;CISPR)”所制定的「CISPR 22限制(limits)”规定,就必须采用符合CISPR 16规范所定义的LISN;CISPR 16是CISPR 22所参考的标准。

图三:一个CISPR LISN的简易电路图

使用LISN的目的是多重的。它是一个“干净的”交流电源,将电能供应给电源供应器。接收机或频谱分析仪可以利用它来读出测量值。它提供一个稳定的均衡阻抗,即使杂讯是来自于电源供应器。最重要的是,它允许测量工作可以在任何地点重覆进行。对杂讯源而言,LISN就是它的负载。

假设在此LISN电路中,L和C的值是这样决定的:电感L小到不会降低交流的电源电流(50/60Hz);但在期望的频率范围内(150 kHz to 30 MHz),它大到可以被视为“开路(open)”。电容C小到可以阻隔交流的电源电压;但在期望的频率范围内,它大到变成“短路(short)”。上面的叙述(几乎)是为真的。在图三中,主要的简化部分是,缆线或接收机的输入阻抗已经被包含进去了。将一条典型的同轴缆线连接到一台测量仪器(分析仪或接收机或示波器…等)时,对一个高频讯号而言,此缆线的输入阻抗是50欧姆(因为传输线效应)。所以,当接收机正在测量这个讯号时,假设在L和E之间,LISN使用一个“继电/切换(relay/switch)电路”,将实际的50欧姆电阻移往相反的配对线路上,也就是在N和E之间。如此就能使所有的线路在任何时候都能保持均衡,不管是测量VL或VN。

选择50欧姆是为了要模拟高频讯号的输入阻抗,因为高频讯号所使用的主要导线之阻抗值近似于50欧姆。此外,它可以让一般的测量工作,在任何地点、任何时间重覆地进行。值得注意的是,电信设备的通讯埠是使用“阻抗稳定网路”,它是使用150欧姆,而不是50欧姆;这是因为一般的「资料线路(data line)”之输入阻抗值近似于150欧姆。
 
为了了解VL和VN,请参考图四。共模电压是25Ω乘以流向E的电流值(或者是50Ω乘以Icm/2)。差模电压是100Ω乘以差模电流。因此,LISN提供下列的负载阻抗给杂讯源(没有任何的输入滤波器存在):
CM负载阻抗是25Ω,DM负载阻抗是100Ω。

当LISN切换时,可以由下式得出杂讯电压值:

VL=25ХIcm+50ХIdm 或 VN=25ХIcm - 50ХIdm

这是否意味着只要在L-E和N-E上做测量,就可以知道CM和DM杂讯的相对比例大小?

其实,许多人常有这样的错误观念:“如果来自于电源供应器的杂讯大部分是属于DM的,则VL和VN的大小将会相等。如果杂讯是属于CM的,则VL和VN的大小也会相等。但是,如果CM和DM的辐射大小几乎相等时,则VL和VN的测量值将不会相同。”
如果这样的观念正确的话,那就表示即使在一个离线的电源供应器中,L和N线路是对称的,但L和N线路上的辐射量还是不相等的。在某一个特殊的时间点,两线路上的个别杂讯大小可能会不相等,但实际上,射频能量是以交流的电源频率,在两条线路之间「跳跃”着,如同工作电流一样。所以,任何侦测器测量此两条线路时,只要测量的时间超过数个电压周期,VL和VN的测量值差异将不会很大的。不过,极小的差异可能会存在,这是因为有各种不同的“不对称性”存在。当然,VL和VN的测量结果必须符合EMI的限制规定。

使用LISN后,就不需要分别测量CM和DM杂讯值,它们是利用上述的代数公式求得的。但有时还是需要各别测量CM和DM杂讯值,譬如:为了排除故障或诊断错误。幸好有一些聪明的方法可以达到各别测量的目的。我们举两个例子:
有一种装置称作“LISN MATE”,不过,目前已经很少被使用了。它会衰减DM杂讯约50dB,但不会大幅衰减CM杂讯(约仅衰减4dB)。它的电路如图五所示。

图六是一种以变压器为基础的装置,它是利用共模电压无法使变压器工作的原理;因为本质上需要差动的一次测电压,才能使变压器线圈内的磁通量“摆动(swing)”。它不像LISN MATE,此时CM和DM杂讯是一起输出。不过,上述的两种方法都需要修改LISN电路。因为一般的LISN只提供VL或VN,无法同时提供这两者。最好是购买CM和DM杂讯有分离输出的LISN。此外,也应该要有总和检视的功能,以确定是否有遵守技术规范的限制。


 

传导式EMI的限制

对EMI而言,滤波器是做何用途呢?表一列出了FCC和CISPR 22的EMI限制规定。此表中比较特殊的是,除了可用dBμV计量以外,也可以用mV来计量。这对那些讨厌使用对数(logarithm)计算的设计者而言很便利。

在对数的定义里:db=20log10[V1/V2] ,V1/V2是输出入电压的比值。所以,dBμV表示是以IμV为对数的比较基准。下式是mV转换成dBμV的公式:

(dBμV)=20Хlog[mV/10-6]

譬如:0.25mV可以透过公式,得出:20log10[0.25Х1,000/1] ≌48 dBμV。

而dBμV转换成mV的公式如下:

(mV)=(10(dbμV)/20)Х10-3

表一:传导式EMI的限制
 
必须注意的是,FCC并没有规定平均的限制值,只规定了“准峰值(quasi-peak)”。虽然,FCC有认可CISPR 22的限制值。但是,FCC不允许两者混用或并用。设计者必须择一而从。不过,以目前的情况来看,FCC Part 15势必会逐渐和CISPR 22完全一致的。

表二是dBμV与mV的快速转换对查表,我们可以利用上述的公式来转换dBμV、mV;或利用表二查得。
 
表二:dBμV与mV的对查表
再观察一下表一中的类别B,尤其是150 kHz至450 kHz,和450 kHz至500 kHz的区域。实际上,对CISPR而言,这是一个连续的区域,因为dBμV对log(f)的限制线在150 kHz到500 kHz的区域内是一条直线。在150 kHz至500 kHz之间,CISPR均限曲线(传导式EMI)的任一点之dBμV值可由下式求出:

(dBμVAVG)= -19.07Хlog(?MHZ)+40.28

为了方便计算和记忆,上式可以改写成:

(dBμVAVG)= -20Хlog(?MHZ)+40

在这个区域内的「准峰值限制”正好比“平均限制”高10dB。所以,在150 kHz至500 kHz之间,CISPR准峰值限制曲线(传导式EMI)的任一点之dBμV值可由下式求出:

(dBμVQP)= -19.07Хlog(?MHZ)+50.28

同样的,上式也可以改写成:

(dBμVQP)= -20Хlog(?MHZ)+50
CISPR 22类别B在150 kHz至500 kHz之间的限制值,实际上是上述的化约式。 就数学定义而言,AХlog(?MHZ)+c是一条直线(如果水平轴具有对数刻度),其斜率为A,当频率(f)为1MHz时,它通过c点。就CISPR 22类别B而言,虽然它的dBμV直线在500 kHz处被截断,但是它的渐近线(asymptote)仍会通过40或50dBμV,这分别是「均限曲线”和「准峰值限制曲线”的c点(亦即,频率为1MHz时的dBμV值)。

例如:当频率为300 kHz时,CISPR 22类别B的EMI限制值是多少呢?利用上述的公式,均限值等于:
-19.07Хlog(0.3)+40.28=50.25dBμV

因为准峰值限制比均限值多10 dB,所以它是60.25 dBμV。

比较表一中的准峰值限制,是否意味着当超过450 kHz时,FCC标准会比CISPR 22严格?首先,FCC标准是以美国国内的电源电压为测量基准;而CISPR则是使用更高的电源电压来测量。所以这是「淮橘成枳”的问题,不能相提并论。此外FCC虽然没有定义均限值,但是当CISPR 22的准峰值限制和均限值之差超过6 dB以上时,它放宽了限制(约13 dB)。因此,在实务上,符合CISPR标准的产品也会符合FCC的标准。

有人说:“频率大约在5 MHz以下时,杂讯电流倾向于以差模为主;但在5 MHz以上时,杂讯电流倾向于以共模为主。”不过这种说法缺乏根据。当频率超过20 MHz时,主要的传导式杂讯可能是来自于电感的感应,尤其是来自于输出缆线的辐射。本质上这是共模。但对一个交换式转换器而言,这并不是共模杂讯的主要来源。如表一所示,标准的传导式EMI限制之频率测量范围是从150 kHz至30 MHz。为何频率范围不再向上增加呢?这是因为到达30 MHz以后,任何传导式杂讯将会被主要的导线大幅地衰减,而且传输距离会变短。但缆线当然还会继续辐射,因此“辐射限制”的范围实际上是从30MHz到1GHz。

结语
来自电源电路的EMI是很难察觉的。因为工程师都习惯将电源供应器想像成一个“干净的”电源,殊不知,越是习以为常的元件,越可能是会发射EMI的“黑盒子”。

CopyRight © 2009-2021,易迪拓培训 All Rights Reserved,沪ICP备05048810-2号 版权所有

网站地图

Top