- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
陶显芳开关电源原理与设计系列连载十八
由于控制开关突然关断,流过变压器初级线圈的励磁电流突然为0,此时,流过变压器次级线圈中的电流就正好接替原来变压器初级线圈中励磁电流的作用,使变压器铁心中的磁感应强度由最大值Bm返回到剩磁所对应的磁感应强度Br位置,即:流过N3绕组电流是由最大值逐步变化到0的。由此可知,反激式变压器开关电源在输出功率的同时,流过次级线圈回路中的电流也在对变压器铁心进行退磁。

图1-20是反激式变压器开关电源,工作于临界连续电流状态时,整流输入电压uo、负载电流Io,变压器铁芯的磁通 ,以及变压器初、次级电流等波形。
图1-20-a)中,变压器次级线圈输出电压uo是一个带正负极性的脉冲波形,一般负半周是一个很规整的矩形波;而正半周,由于输出脉冲被整流二极管限幅,当开关电源工作于连续电流或临界连续电流状态时,输出波形基本也是矩形波。因此,整流二极管的输入电压uo的正半周幅度与输出电压Uo或储能滤波电容的两端电压基本相同。因此,整流二极管的输入电压uo的幅值Up与半波平均值Upa以及整流输出电压Uo均基本相等。
图1-20-b)是变压器铁芯中磁通量变化的过程,在控制开关接通期间,变压器铁芯被磁化;在控制开关关断期间,变压器铁芯被退磁。因此,在Ton期间,变压器铁芯中的磁通量是由剩磁S Br向最大磁通S Bm方向变化;而在Toff期间,变压器铁芯中的磁通量是由最大磁通S Bm向剩磁S Br方向变化。
图1-20-c),是反激式变压器开关电源工作于临界电流状态时,变压器初、次级线圈的电流波形。图中,i1为流过变压器初级线圈中的电流,i2为流过变压器次级线圈中的电流(虚线所示),Io是流过负载的电流(虚线所示)。在控制开关接通期间,变压器铁芯被初级线圈电流磁化;在控制开关关断期间,变压器铁芯被被次级线圈电流退磁,并向负载输出电流。从图1-20-c)还可以看出,流过变压器初、次级线圈中的电流是可以突跳的。在控制开关关断的一瞬间,流过变压器初级线圈的电流由最大值跳变到0,而在同一时刻,流过变压器次级线圈的电流由0跳变到最大值。并且,变压器初级线圈电流的最大值正好等于变压器次级线圈电流最大值的n倍(n为变压器次级电压与初级电压比)。
顺便指出:(1-110)的结果,虽然是以开关电源工作于临界连续电流状态的条件求得,但对于开关电源工作于连续电流状态或断流状态也同样成立,因为,在储能滤波电容的容量足够大的情况下,输出电压Uo只取决于其峰值电压Up,而不是取决于其平均值。
当开关电源工作于电流不连续状态时,即:控制开关的占空比减小时,(1-100)式中的i(0)和(1-108)式中的i2x均为0 ,并且在控制开关关断期间还没结束前,流过变压器次级线圈的电流就已降到0,这相当于开关电源输出电压和输出电流都要降低,在此种情况下,开关电源将会向负载降低功率输出。
[p]
1-7-2.开关电源电路的过渡过程
前面我们分析过的所有开关电源电路,很少提到电路过渡过程的概念,实际上,在开关电源电路中,工作开关的接通和关段,电路中电流和电压的变化过程,都是属于电路过渡过程,但我们为了分析简单,都把电路的过渡过程基本忽略掉了。如果认真对开关电源电路进行分析,输出电路中的电流一般都不是线性的或锯齿波;输出电压也不是一个矩形波或锯齿波,我们把它们当成矩形波或锯齿波,只是在一个特定条件或范围内,把它们的变化率或数值当成了一个平均值来看待。
在具有电感、电容、电阻的电路中,发生电路过渡过程的电压、电流一般都是按指数函数的曲线规律变化,正弦或者余弦函数是指数函数的特殊情况。在具有过渡过程的电路中,我们不能简单地用正弦波电路的计算方法来分析,用付氏变换的方法也很难分析出精确结果。用微分方程对电路过渡过程进行分析是最好的方法。
在电路的过渡过程中,一定要考虑电压或电流的初始值,只有当初始值基本为0或趋于某个固定值时,才可认为电路的过渡过程已经进入稳定状态,但严格来说,这种情况在开关电源电路中不存在。因为,开关电源中的工作开关总是不断地在接通与关断两中工作状态之间来回转换,并且占空比D时刻都在改变,它不可能出现一个稳定值。然而,我们可以把开关电源当成一种特殊情况来处理,或把开关电源电路中,电压或电流的初始值反复出现时,就可以认为开关电源已经工作于稳定状态。
例如,当开关电源在一个或两个工作周期内,对应于工作开关接通或关闭的瞬间,某电路的电压或电流的初始值基本相等,或很接近时,我们就可以认为,开关电源已经进入了稳定工作状态。
当开关电源进入工作稳定状态以后,为了简单,我们一般都用电压或电流的其平均值或半波平均值来进行电路电路计算或分析。例如,我们在计算流过负载的电流时,一般都是利用输出电压的平均值Uo来进行计算,很少考虑输出电压纹波对负载的影响,计算负载电流的结果就是流过负载电流的平均值Io。
然而,在开关电源的设计中,开关电源开机时刻的过渡过程也是不可忽视的,因为,储能滤波电容存储的电荷为0,需要很多个工作周期以后,储能滤波电容才能充满电,其两端电压才基本稳定,开关电源才能进入稳定工作状态。下面,我们来详细分析开关电源开机时刻的过渡过程。

图1-19中,当工作开关由接通转为关断时,开关电源变压器次级线圈产生的反电动势为:

[p]
式中,q为电容存储的电荷量,C1和C2为待定系数,

当t = 0 时,q = 0,由此求得C1 = 0,当t = Toff时,由于电容容量很大,电容器一般在一个工作周期内是不可能充满电的,大约需要十几个周期以上才能充满。当电容充满电时,电容两端的电压就可以达到电源电压的峰值,即:q = UpC,由此,求得C2 = UpC,所以(1-112)式可以写为:


图1-23-a)中,uo为变压器次级线圈输出电压的脉冲波形,虚线是整流之前变压器次级线圈的输出波形(半波平均值),实线是实际输出波形,由于整流二极管的限幅作用,所以实际输出电压幅度要比正常工作时低很多。在每次工作开关由接通转变为关断期间,变压器次级线圈的输出电压,都经整流二极管对储能滤波电容进行充电,使储能滤波电容两端的电压一步、一步地升高,输出电压幅度也一步、一步地升高。
图1-23-b)是储能滤波电容器进行充电的电压波形,它需要经过多个工作周期后才能对储能滤波电容充满电,因此,储能滤波电容两端的电压是按正弦曲线,像爬楼梯一样,一个、一个楼梯一样提升,直到储能滤波电容两端的电压达到最大值Up。
图1-23-c),是变压器初、次级线圈的电流波形。图中,i1为流过变压器初级线圈中的电流,i2为流过变压器次级线圈中的电流(虚线所示)。实际上流过变压器次级线圈中的电流i2也不是线性下降,而是按余弦或指数曲线变化,但由于其曲率变化很小,所以我们把它近似地看成是一根直线,或用其变化率的平均值来代替,以便与输出电压波形(矩形波)对应。
射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...

