- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
中频发电机对检测装置的干扰剖析及EMI滤波器的实现
由于共模干扰和差模干扰具有不同的干扰特点,噪声滤波器设计需要采用不同的结构来对噪声干扰进行抑制。中频发电机产生的噪声以共模干扰为主,共模干扰滤波电路是在电源线的输入上均串入共模电感,即共模扼流圈。共模扼流圈是以铁氧体(或更高导磁率的超微晶磁材)为磁芯的共模干扰抑制器件,它由两个匝数相同并对称地绕制在同一个环形磁芯上的线圈构成,如图5所示,形成一个四端器件,要对于共模信号呈现出的大电感具有抑制作用,而对于差模信号呈现出的很小的漏电感几乎不起作用。
(a)共模电流通过时 (b)差模电流通过时

共模扼流圈的原理是流过共模电流时磁环中的磁通方向相同(磁通方向根据文献[4]判别),因而相互叠加(φ1+φ2),从而具有相当大的电感量,对共模电流起到抑制作用(图5(a)),而当两线圈流过差模电流时,磁环中的磁通方向相反,因而相互抵消(φ1-φ2),几乎没有电感量,所以差模电流可以无衰减地通过(图5(b))。因此共模电感在平衡线路中能有效地抑制共模干扰信号,而对线路正常传输的差模信号无影响。对于中频发电机输出来说,任何时候电源线之间的电流都是大小相等,方向相反的(图5(b)),磁芯中的磁通相互抵消,线圈不呈现阻抗,避免了检测装置发射机高压供电工作时因为滤波器的引入而在电源端产生附加的压降。由此分析得出,在中频发电机供电输出端接入共模扼流圈,能够抑制电源线上供电回路的共模干扰,而对供电电流不起任何阻碍作用,可以无损耗地传输。
共模电感在制作时应满足以下要求:a.绕制在线圈磁芯上的导线要相互绝缘,以保证在高压供电时线圈的匝间不发生击穿短路。b.线圈中的磁芯应与线圈绝缘,以防止在瞬时过电压作用下两者之间发生击穿。c.线圈应尽可能单层绕制,以减小线圈的寄生电容。
2.2 EMI滤波器的电路设计
为减小体积和重量,中频发电机滤波电路采用单级LC EMI滤波器,电路如图6所示。

对于抑制低频噪声,理论上发电机滤波器的电感和电容的参数选得越大,滤波效果越好。但在实际应用中,容量大的电容一般寄生电感也大,自谐振频率低,对高频噪声的去耦效果差,而电感值越大,电感的体积也越大,所以在设计时应权衡各种因素的影响,确定合适的参数。由于检测装置中本身带有几百mF的电容,因此在本系统中,仅在电容前增加一个共模扼流圈(约几十mH,取决于要滤除的干扰的频率,频率越低,需要的电感量越大),它与检测装置原有的电容一起构成了反T型滤波电路。滤波电路参数选定后,必须验证参数选取得是否合适,以保证发电机噪声滤波器的自谐振频率远小于所要滤除的噪声频率,否则发电机噪声滤波器不仅不能够起到抑制噪声干扰的作用,而且很有可能会放大噪声干扰。在EMI滤波器的设计中,起初考虑到除了要抑制中频发电机产生的共模干扰外,还应有抑制差模干扰的能力,但经过相关的实验证明,差模滤波器的使用,并未在需要的频段上增加滤波效果,因此最终仅采用了共模滤波器抑制发电机干扰。
3 发电机拖动试验及实际装载试验
3.1 发电机拖动试验
发电机拖动试验验证系统在中频发电机供电下,检测装置采取滤波措施前、后接收通道的噪声情况比较。试验框图见图7所示。

将中频发电机安装在中频发电机拖动台上,调压器平稳放置,通过转接电缆与检测装置及系统其它设备相连接。检测装置中,接收通道设计有增益控制电路,能够使噪声背景归一化[5],其增益控制电压UG可反映接收通道噪声的大小。
无滤波措施时,测量UG=3.0V,增加滤波措施时,测量UG=6.8V。经初步计算,采取了抗干扰措施后噪声降低了14dB左右。
3.2 实际装载试验
在无滤波措施的情况下,实际装载试验时检测装置工作在恶劣环境下。由于长期以来的认识误区,并没有意识到中频发电机的电噪声是检测装置的主要干扰源,导致检测距离严重不足。因而设法采取了其它各种降噪声措施,但收效甚微。图8是在发电机噪声干扰情况下,实际装载试验时目标出现在远距离的检测结果,横坐标为该距离下的频率点,纵坐标为检测值与门限值的幅度,信号应出现在140的频率点附近,由于噪声太大,信号完全被淹没在噪声中,检测装置不能够发现目标。

图9是发电机噪声干扰情况下,实际装载试验时目标已出现在较近距离时的检测结果。此时随着检测装置与目标之间的距离接近,信噪比逐渐增大,信号已超过了门限值,检测装置发现了目标。但是探测距离极为有限。

当采取了抗干扰措施之后再进行实际装载试验,系统内电噪声降低到与自噪声相比可以忽略不计的程度。由于降低噪声的效果非常显著,大大改善了系统的工作环境,使检测距离大幅度增长,达到了一个新的水平。图1O为实际装载工作时目标出现在远距离(与图8相同的距离)下的检测结果。从图10可以看出,信号已远远超出门限,检测装置能够在此距离甚至更远距离下发现目标。由于检测装置的探测距离受到检测周期的限制,图8和图10的距离已是检测装置的极限距离。从图10中信号超出门限的幅度看,检测能力还有余量,可利用加大检测周期长度进一步提高检测距离。

4 结语
检测装置工作于实际装载情况下。但是由于实际装载时干扰因素很多,自噪声与环境噪声叠加在一起无法区分,因此在本课题中,确定噪声源是一个难点,包括对检测装置噪声源的定位及中频发电机噪声对检测装置的干扰机理的分析。噪声源一旦确定,对检测装置来说是一个长足的进步,是提高其性能的关键。本研究针对具体情况作出具体分析,找出干扰源,并将抗干扰措施首次应用到检测装置中,取得了较好的噪声抑制效果,大幅度提高了检测装置的信噪比。
作者:易红, 高鹏, 郝保安,程武奎,何辰,陈春玉,朱世英
来源:电子技术

