- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
IEEE 1588精密时间协议——分组网络上的频率同步
确定目标精度
PTP协议采用硬件时间戳技术提供亚微秒级的精度。在电信WAN上的性能表现取决于以下三个主要因素:
* 主从时钟中的时间戳引擎的分辨率和精度(起始精度)
* 穿越WAN的延时/数据包延时变化(PDV),包括跳数、负载以及交换机/路由器配置
* 在从时钟侧的伺服处理增益和振荡器实现(PDV的不确定性被滤除的效率有多高)
在起始精度较高的情况下,电信网络上的数据包延时变化(PDV)将很快成为基于数据包的定时解决方案的误差主导因素。注重QoS配置和负载变化的两层交换网络可以提供最佳的PDV性能。这种情况非常适合IEEE 1588 PTP,因为PTP针对两层交换环境作了优化。然而,PDV是三层软件路由网络中的主导因素。振荡器稳定性和从时钟侧的伺服设计将成为确保满足电信网络同步要求的关键性能因素。
选择广播间隔和振荡器类型
在PTP中,目标定时精度决定了同步报文广播的频度以及使用什么类型的振荡器。更频繁的广播可以得到更精确的同步,但也会产生更多的网络流量,虽然使用的带宽非常小。更高质量的振荡器也能得到更精确的同步。使用较低质量的振荡器同时增加广播频率以便更经济地达到目标精度似乎很有诱惑力,但这种做法是不推荐的。低质量的振荡器缺少为电信应用提供高精度PTP所需的稳定性,因此缩短广播间隔通常得不偿失。
精度也是IEEE 1588主时钟的功能。IEEE 1588主时钟也被称为最高级时钟(grandmaster),是网络上的最终时间源。最高级时钟通常以GPS为基准,因此非常稳定,也非常精确。UTC(协调世界时)的精度通常在30ns RMS以上。通过使用如此高精度的时钟和绝对时间基准,PTP网络上的时间可以得到很好的同步。高品质的最高级时钟还有其它一些测量特性,可用来表征网元的延时和抖动特征,并测量相对于最高级时钟的从时钟精度。
来源:维库开发网.大力士
上一篇:达迪:多路2M在线监测解决方案
下一篇:新一代呼叫中心技术发展展望


