• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 微波/射频 > RFIC > 一种改善W-CDMA手机用功率放大器线性度的新方法

一种改善W-CDMA手机用功率放大器线性度的新方法

录入:edatop.com    点击:

1 引言

第三代移动通信(3rd-Generation,简称3G)系统具有更大的容量、更好的通讯品质、更高的频带利用率,这些特点使得它能为高速和低速移动用户提供语音、数据、电视会议及多媒体等多种业务。但这些出色的性能也对硬件电路系统提出了更高的要求,尤其是发射子系统的功率放大器(PA)单元。W-CDMA(Wideband Code Division Multiple Access)作为第三代移动通信(3G)的标准之一已经在欧洲和日本获得了成功的商业应用。W-CDMA系统的PA具有如下新的特点:

第一,在3G手机中,最关键的是高速数据传送要求具有更高的带宽和发送功率。在W-CDMA中采用带宽为3.84MHz的伪随机噪声码(Pseu-do-Noise code,PN码),因此用户信号带宽也为3.84MHz,由放大器IMX产生的非线性失真分布在更宽的范围内。

第二,为了提高数据发送速率和增加频谱利用效率,采用混合相移键控HPSK(Hybrid Phase ShiftKeying)调制方法,要求PA必须有良好的线性度。功放的AM-PM特性会导致调制信号的相位失真,从而接收系统的误码率会上升,导致系统通信品质的降低。

第三,由于远近效应的存在,PA的输出动态范围大。按照第三代合作伙伴计划(3rd GenerationPartnership Project,简称3GPP)推出的W-CDMA标准,要求发射机可控发射功率范围为+24dBm到-50dBm,共74dB的动态范围,如果再考虑一些余量,整个发射机应具有超过80dB的动态范围。发射机芯片动态指标往往受限于高功率时的ACPR指标和低功率时的噪声底,而临近信道泄漏功率的大小与输入功率的三次方成正比,为避免对临近信道用户产生过大干扰,最大功率输出时ACPR不应大于-37dBc。

2 第三代移动通信W-CDMA功率放大器电路中效率与线性特性的关系

在3GPP制定的W-CDMA标准中,只有对PA的线性度和发射功率的要求,所以它们是第一位的。对线性度近乎苛刻的要求,就需要与其它参数进行折中,例如效率。W-CDMA系统的射频信号为非恒定包络,这决定了只能利用工作效率在25%至35%之间的线性放大器,而采用非线性功率放大器的第二代GSM电话发射机的典型工作效率约为50%。由于W-CDMA的射频信号为多种业务数据的叠加,因此不同于恒定包络信号,射频功率放大器不能被驱动至压缩区,而必须采用功率回退的方法使功率放大器工作于线性区。回退越多,线性越好,但功率放大器的效率也越低。为了兼顾线性和效率,W-CDMA功率放大器的设计一般都会采用各种线性化技术来达到线性和效率之间的平衡。

3 目前常用的几种改善功率放大器线性度的方法

实现射频功放线性化的技术很多,常见的有以下三种:功率回退(back-off)法、前馈(feedforward)法和预失真(predistortion)法。

3.1 功率回退法

在众多线性化技术中,功率回退技术是最常用的方法,即把功率放大器的输入功率从1dB压缩点向后回退几个分贝,工作在远小于1dB压缩点的电平上,使功率放大器远离饱和区,进入线性工作区,从而改善功率放大器的三阶交调系数。即选用功率较大的管子作小功率管使用,实际上是以牺牲直流功耗来提高功放的线性度。

功率回退法简单且易实现,不需要增加任何附加设备,是改善放大器线性度行之有效的方法,缺点是功率放大器的效率大为降低。另外,当功率回退到一定程度,即当三阶交调(IM3)达到-40dBc以下时,继续回退将不再改善放大器的线性度。因此,在线性度要求很高的场合,完全靠功率回退是不够的。

3.2 前馈法

前馈线性化技术原理如图1所示。射频信号输人后,经功分器(Splitter)分成两路。一路进入主功率放大器A1,由于其非线性失真,输出端除了有需要放大的主频信号外,还有三阶交调干扰。从主功放的输出中耦合一部分信号与另一路经过延时线TD1延时的输入信号在合成器(Subtracter)中叠加,使主载频信号完全抵消,只剩下反相的三阶交调分量。三阶交调分量经辅助放大器放大后与经延时线TD2延时的主功放输出信号在耦合器C2中叠加,抵消主功放的三阶交调干扰,从而得到线性的放大信号。

前馈技术既提供了较高校准精度的优点,又没有不稳定和带宽受限的缺点;但是,这些优点是用高成本换来的。由于在输出端进行校准时,功率电平较大,校准信号需放大到较高的功率电平,这就需要额外的辅助放大器,而且要求这个辅助放大器本身的失真特性应处在前馈系统的指标之上,并且由于在校准环中添加了一辅助功率放大器,因而总效率有所降低。

前馈功放的抵消要求是很高的,需获得幅度、相位和时延的匹配,如果出现功率变化、温度变化及器件老化等情况均会造成抵消失灵。为此需要在系统中考虑自适应抵消技术,使抵消能够跟得上内外环境的变化。

3.3 预失真法

预失真就是在功率放大器前增加一个非线性电路用以补偿功率放大器的非线性。预失真线性化技术的原理如图2所示。

预失真线性化技术,它的优点在于不存在稳定性问题、有更宽的信号频带、能够处理含多载波的信号。预失真技术成本较低,由几个仔细选取的元件封装成单一模块,连在信号源与功放之间,就构成预失真线性功放。手持移动台中的功放已采用了预失真技术,它仅用少量的元件就降低了互调IM产物几dB,但却是很关键的几dB。

预失真技术分为RF预失真和数字基带预失真两种基本类型。RF预失真一般采用模拟电路来实现,具有电路结构简单、成本低、易于高频、宽带应用等优点,缺点是频谱再生分量改善较少、高阶频谱分量抵消较困难。基带预失真由于工作频率低,可以用数字电路实现,适应性强,而且可以通过增加采样率和增大量化阶数的办法来抵消高阶互调失真,是一种很有发展前途的方法。数字基带预失真原理如图3所示。

数字预失真器由一个矢量增益调节器组成,根据查找表LUT的内容来控制输入信号的幅度和相位,预失真的大小由查找表LUT的输入来控制。矢量增益调节器一旦被优化,将提供一个与功放相反的非线性特性。理想情况下,这时输出的互调产物应该与双音信号通过功放的输出幅度相等而相位相反,即自适应调节模块就是要调节查找表的输入,从而使输入信号与功放输出信号的差别最小。注意到输入信号的包络也是查找表LUT的一个输入,反馈路径来取样功放的失真输出,然后经过A/D变换送入自适应调节DSP中,进而来更新查找表(LUT)。实验结果表明在输出功率为27dBm时,应用数字预失真技术的放大器功率附加效率(PAE)可以提高20%,ACPR可以改善6dB。

然而,从成本和体积两方面来考虑,前馈技术和预失真技术只能应用于基站,不适合应用于手机功放。

4 利用等效低通滤波器模型改善W-CDMA手机用功率放大器线性度的新方法

W-CDMA系统采用非恒定包络的调制方法使得对功率放大器的设计提出了高线性的要求。衡量W-CDMA功率放大器线性度的指标是临近信道泄漏功率比(ACPR),其定义为临近信道内泄漏功率与主信道内信号功率的比值(以dBc为单位)。W-CDMA采用5MHz的信道带宽,信号集中在信道内3.84MHz的中心带宽内。对于我们研究的主信道来说,其两边5MHz间隔处有左右两个信道(分别对应为lower channel和upper channel)。在实际测试中经常会观察到左右两边两个信道所对应的ACPR值不同,也就是产生了ACPR的不对称性。ACPR不对称性会使ACPR的指标恶化,致使功放的线性度大幅度降低。在数字预失真线性化[7]技术中ACPR不对称性的影响是十分严重的。因此研究ACPR

如何成为一名优秀的射频工程师,敬请关注: 射频工程师养成培训

上一篇:输出峰值功率1kW的晶体管射频放大器
下一篇:3G中的CMOS基RF集成

射频和天线工程师培训课程详情>>

  网站地图