- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
HFSS15: References for Time Domain
[1] Z. Cendes, D.N. Shenton, and H. Shahnasser. “Magnetic field computation using Delaunay triangulation and complementary finite element method”, IEEE Trans. on Magnetics, 19(6):2551, 1983.
[2] A. Taflove, “Application of the Finite-Difference Time-Domain Method to Sinusoidal Steady-State Electromagnetic-Penetration Problems, Electromagnetic Compatibility”, IEEE Transactions on Volume EMC-22, Issue 3, Aug. 1980 Page(s):191 – 202
[3] T. Weiland, “A discretization method for the solution of Maxwell's equations for six-component Fields”, Electronics and Communications, vol. 31, no. 3, pp. 116-120, 1977
[4] P. Bonnet, X. Ferrières, B. Michielsen, and P. Klotz, “Time Domain Electromagnetics”, S. M. Rao, Ed., Academic Press, 1997, ch. 9, pp. 307-367.
[5] D. Baumann, C. Fumeaux, and R. Vahldieck, "Field-Based Scattering-Matrix Extraction Scheme for the FVTD Method Exploiting a Flux-Splitting Algorithm," IEEE Trans. on Microwave Theory and Tech., vol. 53, no. 11, Nov. 2005.
[6] J-F. Lee, R. Lee, and A.C. Cangellaris, “Time-Domain Finite-Element Methods”, IEEE Trans.Antennas Propag., vol. 45, pp. 430-442, Mar. 1997.
[7] B. Cockburn, G. Karniadakis, and C.-W Shu, “Discontinuous Galerkin Methods: Theory, Computation and Applications”, Lecture Notes in Computational Science and Engineering (Springer-Verlag, New York, 2000), Vol. 11.
[8] J. Hesthaven,T. Warburton, “Nodal high-order methods on unstructured grids”, Journal of Computational Physics, v.181 n.1, p.186-221, September 1 2002.
[9] J. Hesthaven and T. Warburton, “Nodal Discontinuous Galerkin Methods Algorithms, Analysis, and Applications”, Springer series: Texts In Applied Mathematics, vol. 54, 2007.
[10] A. Buffa, I. Perugia, “Discontinuous Galerkin approximation of the Maxwell eigenproblem”,SIAM J. Numer. Anal. 44, 2198, 2006.
[11] Leveque, Randall, “Finite Volume Methods for Hyperbolic Problems”, Cambridge University Press, 2002.
[12] L. Fezoui, S. Lanteri, S. Lohrengel and S. Piperno, “Convergence and stability of a Discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes”, ESAIM: Math. Model. and Numer. Anal., Vol. 39, No. 6, pp. 1149-1176, 2005.
[13] R.A. Chilton and R. Lee, "The discrete origin of FETD-Newmark late time instability, and a correction scheme," J. Comp. Physics, vol. 224, pp. 1293-1306, 2007.


